Device Tree總共有三篇,分別是:
1、為何要引入Device Tree,這個(gè)機(jī)制是用來解決什么問題的?(請參考引入Device Tree的原因)
2、Device Tree的基礎(chǔ)概念(請參考DT基礎(chǔ)概念)
3、ARM linux中和Device Tree相關(guān)的代碼分析(這是本文的主題)
本文主要內(nèi)容是:以Device Tree相關(guān)的數(shù)據(jù)流分析為索引,對ARM linux kernel的代碼進(jìn)行解析。主要的數(shù)據(jù)流包括:
1、初始化流程。也就是掃描dtb并將其轉(zhuǎn)換成Device Tree Structure。
2、傳遞運(yùn)行時(shí)參數(shù)傳遞以及platform的識別流程分析
3、如何將Device Tree Structure并入linux kernel的設(shè)備驅(qū)動(dòng)模型。
注:本文中的linux kernel使用的是3.14版本。
二、如何通過Device Tree完成運(yùn)行時(shí)參數(shù)傳遞以及platform的識別功能?
1、匯編部分的代碼分析
linux/arch/arm/kernel/head.S文件定義了bootloader和kernel的參數(shù)傳遞要求:
MMU = off, D-cache = off, I-cache = dont care, r0 = 0, r1 = machine nr, r2 = atags or dtb pointer.
目前的kernel支持舊的tag list的方式,同時(shí)也支持device tree的方式。r2可能是device tree binary file的指針(bootloader要傳遞給內(nèi)核之前要copy到memory中),也可以能是tag list的指針。在ARM的匯編部分的啟動(dòng)代碼中(主要是head.S和head-common.S),machine type ID和指向DTB或者atags的指針被保存在變量__machine_arch_type和__atags_pointer中,這么做是為了后續(xù)c代碼進(jìn)行處理。
2、和device tree相關(guān)的setup_arch代碼分析
具體的c代碼都是在setup_arch中處理,這個(gè)函數(shù)是一個(gè)總的入口點(diǎn)。具體代碼如下(刪除了部分無關(guān)代碼):
void __init setup_arch(char **cmdline_p)
{
const struct machine_desc *mdesc;……
mdesc = setup_machine_fdt(__atags_pointer);
if (!mdesc)
mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
machine_desc = mdesc;
machine_name = mdesc->name;……
}
對于如何確定HW platform這個(gè)問題,舊的方法是靜態(tài)定義若干的machine描述符(struct machine_desc ),在啟動(dòng)過程中,通過machine type ID作為索引,在這些靜態(tài)定義的machine描述符中掃描,找到那個(gè)ID匹配的描述符。在新的內(nèi)核中,首先使用setup_machine_fdt來setup machine描述符,如果返回NULL,才使用傳統(tǒng)的方法setup_machine_tags來setup machine描述符。傳統(tǒng)的方法需要給出__machine_arch_type(bootloader通過r1寄存器傳遞給kernel的)和tag list的地址(用來進(jìn)行tag parse)。__machine_arch_type用來尋找machine描述符;tag list用于運(yùn)行時(shí)參數(shù)的傳遞。隨著內(nèi)核的不斷發(fā)展,相信有一天linux kernel會完全拋棄tag list的機(jī)制。
3、匹配platform(machine描述符)
setup_machine_fdt函數(shù)的功能就是根據(jù)Device Tree的信息,找到最適合的machine描述符。具體代碼如下:
const struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys)
{
const struct machine_desc *mdesc, *mdesc_best = NULL;if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys)))
return NULL;mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach);
if (!mdesc) {
出錯(cuò)處理
}/* Change machine number to match the mdesc we're using */
__machine_arch_type = mdesc->nr;return mdesc;
}
early_init_dt_scan函數(shù)有兩個(gè)功能,一個(gè)是為后續(xù)的DTB scan進(jìn)行準(zhǔn)備工作,另外一個(gè)是運(yùn)行時(shí)參數(shù)傳遞。具體請參考下面一個(gè)section的描述。
of_flat_dt_match_machine是在machine描述符的列表中scan,找到最合適的那個(gè)machine描述符。我們首先看如何組成machine描述符的列表。和傳統(tǒng)的方法類似,也是靜態(tài)定義的。DT_MACHINE_START和MACHINE_END用來定義一個(gè)machine描述符。編譯的時(shí)候,compiler會把這些machine descriptor放到一個(gè)特殊的段中(.arch.info.init),形成machine描述符的列表。machine描述符用下面的數(shù)據(jù)結(jié)構(gòu)來標(biāo)識(刪除了不相關(guān)的member):
struct machine_desc {
unsigned int nr; /* architecture number */
const char *const *dt_compat; /* array of device tree 'compatible' strings */……
};
nr成員就是過去使用的machine type ID。內(nèi)核machine描述符的table有若干個(gè)entry,每個(gè)都有自己的ID。bootloader傳遞了machine type ID,指明使用哪一個(gè)machine描述符。目前匹配machine描述符使用compatible strings,也就是dt_compat成員,這是一個(gè)string list,定義了這個(gè)machine所支持的列表。在掃描machine描述符列表的時(shí)候需要不斷的獲取下一個(gè)machine描述符的compatible字符串的信息,具體的代碼如下:
static const void * __init arch_get_next_mach(const char *const **match)
{
static const struct machine_desc *mdesc = __arch_info_begin;
const struct machine_desc *m = mdesc;if (m >= __arch_info_end)
return NULL;mdesc++;
*match = m->dt_compat;
return m;
}
__arch_info_begin指向machine描述符列表第一個(gè)entry。通過mdesc++不斷的移動(dòng)machine描述符指針(Note:mdesc是static的)。match返回了該machine描述符的compatible string list。具體匹配的算法倒是很簡單,就是比較字符串而已,一個(gè)是root node的compatible字符串列表,一個(gè)是machine描述符的compatible字符串列表,得分最低的(最匹配的)就是我們最終選定的machine type。
4、運(yùn)行時(shí)參數(shù)傳遞
運(yùn)行時(shí)參數(shù)是在掃描DTB的chosen node時(shí)候完成的,具體的動(dòng)作就是獲取chosen node的bootargs、initrd等屬性的value,并將其保存在全局變量(boot_command_line,initrd_start、initrd_end)中。使用tag list方法是類似的,通過分析tag list,獲取相關(guān)信息,保存在同樣的全局變量中。具體代碼位于early_init_dt_scan函數(shù)中:
bool __init early_init_dt_scan(void *params)
{
if (!params)
return false;/* 全局變量initial_boot_params指向了DTB的header*/
initial_boot_params = params;/* 檢查DTB的magic,確認(rèn)是一個(gè)有效的DTB */
if (be32_to_cpu(initial_boot_params->magic) != OF_DT_HEADER) {
initial_boot_params = NULL;
return false;
}/* 掃描 /chosen node,保存運(yùn)行時(shí)參數(shù)(bootargs)到boot_command_line,此外,還處理initrd相關(guān)的property,并保存在initrd_start和initrd_end這兩個(gè)全局變量中 */
of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);/* 掃描根節(jié)點(diǎn),獲取 {size,address}-cells信息,并保存在dt_root_size_cells和dt_root_addr_cells全局變量中 */
of_scan_flat_dt(early_init_dt_scan_root, NULL);/* 掃描DTB中的memory node,并把相關(guān)信息保存在meminfo中,全局變量meminfo保存了系統(tǒng)內(nèi)存相關(guān)的信息。*/
of_scan_flat_dt(early_init_dt_scan_memory, NULL);return true;
}
設(shè)定meminfo(該全局變量確定了物理內(nèi)存的布局)有若干種途徑:
1、通過tag list(tag是ATAG_MEM)傳遞memory bank的信息。
2、通過command line(可以用tag list,也可以通過DTB)傳遞memory bank的信息。
3、通過DTB的memory node傳遞memory bank的信息。
目前當(dāng)然是推薦使用Device Tree的方式來傳遞物理內(nèi)存布局信息。
三、初始化流程
在系統(tǒng)初始化的過程中,我們需要將DTB轉(zhuǎn)換成節(jié)點(diǎn)是device_node的樹狀結(jié)構(gòu),以便后續(xù)方便操作。具體的代碼位于setup_arch->unflatten_device_tree中。
void __init unflatten_device_tree(void)
{
__unflatten_device_tree(initial_boot_params, &of_allnodes,
early_init_dt_alloc_memory_arch);/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
of_alias_scan(early_init_dt_alloc_memory_arch);
}
我們用struct device_node 來抽象設(shè)備樹中的一個(gè)節(jié)點(diǎn),具體解釋如下:
struct device_node {
const char *name;----------------------device node name
const char *type;-----------------------對應(yīng)device_type的屬性
phandle phandle;-----------------------對應(yīng)該節(jié)點(diǎn)的phandle屬性
const char *full_name; ----------------從“/”開始的,表示該node的full pathstruct property *properties;-------------該節(jié)點(diǎn)的屬性列表
struct property *deadprops; ----------如果需要?jiǎng)h除某些屬性,kernel并非真的刪除,而是掛入到deadprops的列表
struct device_node *parent;------parent、child以及sibling將所有的device node連接起來
struct device_node *child;
struct device_node *sibling;
struct device_node *next; --------通過該指針可以獲取相同類型的下一個(gè)node
struct device_node *allnext;-------通過該指針可以獲取node global list下一個(gè)node
struct proc_dir_entry *pde;--------開放到userspace的proc接口信息
struct kref kref;-------------該node的reference count
unsigned long _flags;
void *data;
};
unflatten_device_tree函數(shù)的主要功能就是掃描DTB,將device node被組織成:
1、global list。全局變量struct device_node *of_allnodes就是指向設(shè)備樹的global list
2、tree。
這些功能主要是在__unflatten_device_tree函數(shù)中實(shí)現(xiàn),具體代碼如下(去掉一些無關(guān)緊要的代碼):
static void __unflatten_device_tree(struct boot_param_header *blob,---需要掃描的DTB
struct device_node **mynodes,---------global list指針
void * (*dt_alloc)(u64 size, u64 align))------內(nèi)存分配函數(shù)
{
unsigned long size;
void *start, *mem;
struct device_node **allnextp = mynodes;此處刪除了health check代碼,例如檢查DTB header的magic,確認(rèn)blob的確指向一個(gè)DTB。
/* scan過程分成兩輪,第一輪主要是確定device-tree structure的長度,保存在size變量中 */
start = ((void *)blob) + be32_to_cpu(blob->off_dt_struct);
size = (unsigned long)unflatten_dt_node(blob, 0, &start, NULL, NULL, 0);
size = ALIGN(size, 4);/* 初始化的時(shí)候,并不是掃描到一個(gè)node或者property就分配相應(yīng)的內(nèi)存,實(shí)際上內(nèi)核是一次性的分配了一大片內(nèi)存,這些內(nèi)存包括了所有的struct device_node、node name、struct property所需要的內(nèi)存。*/
mem = dt_alloc(size + 4, __alignof__(struct device_node));
memset(mem, 0, size);*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef); //用來檢驗(yàn)后面unflattening是否溢出
/* 這是第二輪的scan,第一次scan是為了得到保存所有node和property所需要的內(nèi)存size,第二次就是實(shí)打?qū)嵉囊獦?gòu)建device node tree了 */
start = ((void *)blob) + be32_to_cpu(blob->off_dt_struct);
unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0);
此處略去校驗(yàn)溢出和校驗(yàn)OF_DT_END。
}
具體的scan是在unflatten_dt_node函數(shù)中,如果已經(jīng)清楚地了解DTB的結(jié)構(gòu),其實(shí)代碼很簡單,這里就不再細(xì)述了。
四、如何并入linux kernel的設(shè)備驅(qū)動(dòng)模型
在linux kernel引入統(tǒng)一設(shè)備模型之后,bus、driver和device形成了設(shè)備模型中的鐵三角。在驅(qū)動(dòng)初始化的時(shí)候會將代表該driver的一個(gè)數(shù)據(jù)結(jié)構(gòu)(一般是xxx_driver)掛入bus上的driver鏈表。device掛入鏈表分成兩種情況,一種是即插即用類型的bus,在插入一個(gè)設(shè)備后,總線可以檢測到這個(gè)行為并動(dòng)態(tài)分配一個(gè)device數(shù)據(jù)結(jié)構(gòu)(一般是xxx_device,例如usb_device),之后,將該數(shù)據(jù)結(jié)構(gòu)掛入bus上的device鏈表。bus上掛滿了driver和device,那么如何讓device遇到“對”的那個(gè)driver呢?那么就要靠緣分了,也就是bus的match函數(shù)。
上面是一段導(dǎo)論,我們還是回到Device Tree。導(dǎo)致Device Tree的引入ARM體系結(jié)構(gòu)的代碼其中一個(gè)最重要的原因的太多的靜態(tài)定義的表格。例如:一般代碼中會定義一個(gè)static struct platform_device *xxx_devices的靜態(tài)數(shù)組,在初始化的時(shí)候調(diào)用platform_add_devices。這些靜態(tài)定義的platform_device往往又需要靜態(tài)定義各種resource,這導(dǎo)致靜態(tài)表格進(jìn)一步增大。如果ARM linux中不再定義這些表格,那么一定需要一個(gè)轉(zhuǎn)換的過程,也就是說,系統(tǒng)應(yīng)該會根據(jù)Device tree來動(dòng)態(tài)的增加系統(tǒng)中的platform_device。當(dāng)然,這個(gè)過程并非只是發(fā)生在platform bus上(具體可以參考“Platform Device”的設(shè)備),也可能發(fā)生在其他的非即插即用的bus上,例如AMBA總線、PCI總線。一言以蔽之,如果要并入linux kernel的設(shè)備驅(qū)動(dòng)模型,那么就需要根據(jù)device_node的樹狀結(jié)構(gòu)(root是of_allnodes)將一個(gè)個(gè)的device node掛入到相應(yīng)的總線device鏈表中。只要做到這一點(diǎn),總線機(jī)制就會安排device和driver的約會。
當(dāng)然,也不是所有的device node都會掛入bus上的設(shè)備鏈表,比如cpus node,memory node,choose node等。
1、cpus node的處理
這部分的處理可以參考setup_arch->arm_dt_init_cpu_maps中的代碼,具體的代碼如下:
void __init arm_dt_init_cpu_maps(void)
{
scan device node global list,尋找full path是“/cpus”的那個(gè)device node。cpus這個(gè)device node只是一個(gè)容器,其中包括了各個(gè)cpu node的定義以及所有cpu node共享的property。
cpus = of_find_node_by_path("/cpus");
for_each_child_of_node(cpus, cpu) { 遍歷cpus的所有的child node
u32 hwid;if (of_node_cmp(cpu->type, "cpu")) 我們只關(guān)心那些device_type是cpu的node
continue;
if (of_property_read_u32(cpu, "reg", &hwid)) { 讀取reg屬性的值并賦值給hwid
return;
}reg的屬性值的8 MSBs必須設(shè)置為0,這是ARM CPU binding定義的。
if (hwid & ~MPIDR_HWID_BITMASK)
return;不允許重復(fù)的CPU id,那是一個(gè)災(zāi)難性的設(shè)定
for (j = 0; j < cpuidx; j++)
if (WARN(tmp_map[j] == hwid, "Duplicate /cpu reg "
"properties in the DT\n"))
return;數(shù)組tmp_map保存了系統(tǒng)中所有CPU的MPIDR值(CPU ID值),具體的index的編碼規(guī)則是: tmp_map[0]保存了booting CPU的id值,其余的CPU的ID值保存在1~NR_CPUS的位置。
if (hwid == mpidr) {
i = 0;
bootcpu_valid = true;
} else {
i = cpuidx++;
}tmp_map[i] = hwid;
}根據(jù)DTB中的信息設(shè)定cpu logical map數(shù)組。
for (i = 0; i < cpuidx; i++) {
set_cpu_possible(i, true);
cpu_logical_map(i) = tmp_map[i];
}
}
要理解這部分的內(nèi)容,需要理解ARM CUPs binding的概念,可以參考linux/Documentation/devicetree/bindings/arm目錄下的CPU.txt文件的描述。
2、memory的處理
這部分的處理可以參考setup_arch->setup_machine_fdt->early_init_dt_scan->early_init_dt_scan_memory中的代碼。具體如下:
int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
int depth, void *data)
{
char *type = of_get_flat_dt_prop(node, "device_type", NULL); 獲取device_type屬性值
__be32 *reg, *endp;
unsigned long l;在初始化的時(shí)候,我們會對每一個(gè)device node都要調(diào)用該call back函數(shù),因此,我們要過濾掉那些和memory block定義無關(guān)的node。和memory block定義有的節(jié)點(diǎn)有兩種,一種是node name是memory@形態(tài)的,另外一種是node中定義了device_type屬性并且其值是memory。
if (type == NULL) {
if (depth != 1 || strcmp(uname, "memory@0") != 0)
return 0;
} else if (strcmp(type, "memory") != 0)
return 0;獲取memory的起始地址和length的信息。有兩種屬性和該信息有關(guān),一個(gè)是linux,usable-memory,不過最新的方式還是使用reg屬性。
reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
if (reg == NULL)
reg = of_get_flat_dt_prop(node, "reg", &l);
if (reg == NULL)
return 0;endp = reg + (l / sizeof(__be32));
reg屬性的值是address,size數(shù)組,那么如何來取出一個(gè)個(gè)的address/size呢?由于memory node一定是root node的child,因此dt_root_addr_cells(root node的#address-cells屬性值)和dt_root_size_cells(root node的#size-cells屬性值)之和就是address,size數(shù)組的entry size。
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
u64 base, size;base = dt_mem_next_cell(dt_root_addr_cells, ?);
size = dt_mem_next_cell(dt_root_size_cells, ?);early_init_dt_add_memory_arch(base, size); 將具體的memory block信息加入到內(nèi)核中。
}return 0;
}
3、interrupt controller的處理
初始化是通過start_kernel->init_IRQ->machine_desc->init_irq()實(shí)現(xiàn)的。我們用S3C2416為例來描述interrupt controller的處理過程。下面是machine描述符的定義。
DT_MACHINE_START(S3C2416_DT, "Samsung S3C2416 (Flattened Device Tree)")
……
.init_irq = irqchip_init,
……
MACHINE_END
在driver/irqchip/irq-s3c24xx.c文件中定義了兩個(gè)interrupt controller,如下:
IRQCHIP_DECLARE(s3c2416_irq, "samsung,s3c2416-irq", s3c2416_init_intc_of);
IRQCHIP_DECLARE(s3c2410_irq, "samsung,s3c2410-irq", s3c2410_init_intc_of);
當(dāng)然,系統(tǒng)中可以定義更多的irqchip,不過具體用哪一個(gè)是根據(jù)DTB中的interrupt controller node中的compatible屬性確定的。在driver/irqchip/irqchip.c文件中定義了irqchip_init函數(shù),如下:
void __init irqchip_init(void)
{
of_irq_init(__irqchip_begin);
}
__irqchip_begin就是所有的irqchip的一個(gè)列表,of_irq_init函數(shù)是遍歷Device Tree,找到匹配的irqchip。具體的代碼如下:
void __init of_irq_init(const struct of_device_id *matches)
{
struct device_node *np, *parent = NULL;
struct intc_desc *desc, *temp_desc;
struct list_head intc_desc_list, intc_parent_list;INIT_LIST_HEAD(&intc_desc_list);
INIT_LIST_HEAD(&intc_parent_list);遍歷所有的node,尋找定義了interrupt-controller屬性的node,如果定義了interrupt-controller屬性則說明該node就是一個(gè)中斷控制器。
for_each_matching_node(np, matches) {
if (!of_find_property(np, "interrupt-controller", NULL) ||
!of_device_is_available(np))
continue;
分配內(nèi)存并掛入鏈表,當(dāng)然還有根據(jù)interrupt-parent建立controller之間的父子關(guān)系。對于interrupt controller,它也可能是一個(gè)樹狀的結(jié)構(gòu)。
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (WARN_ON(!desc))
goto err;desc->dev = np;
desc->interrupt_parent = of_irq_find_parent(np);
if (desc->interrupt_parent == np)
desc->interrupt_parent = NULL;
list_add_tail(&desc->list, &intc_desc_list);
}正因?yàn)閕nterrupt controller被組織成樹狀的結(jié)構(gòu),因此初始化的順序就需要控制,應(yīng)該從根節(jié)點(diǎn)開始,依次遞進(jìn)到下一個(gè)level的interrupt controller。
while (!list_empty(&intc_desc_list)) { intc_desc_list鏈表中的節(jié)點(diǎn)會被一個(gè)個(gè)的處理,每處理完一個(gè)節(jié)點(diǎn)就會將該節(jié)點(diǎn)刪除,當(dāng)所有的節(jié)點(diǎn)被刪除,整個(gè)處理過程也就是結(jié)束了。
list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
const struct of_device_id *match;
int ret;
of_irq_init_cb_t irq_init_cb;最開始的時(shí)候parent變量是NULL,確保第一個(gè)被處理的是root interrupt controller。在處理完root node之后,parent變量被設(shè)定為root interrupt controller,因此,第二個(gè)循環(huán)中處理的是所有parent是root interrupt controller的child interrupt controller。也就是level 1(如果root是level 0的話)的節(jié)點(diǎn)。
if (desc->interrupt_parent != parent)
continue;list_del(&desc->list); -----從鏈表中刪除
match = of_match_node(matches, desc->dev);-----匹配并初始化
if (WARN(!match->data,----------match->data是初始化函數(shù)
"of_irq_init: no init function for %s\n",
match->compatible)) {
kfree(desc);
continue;
}irq_init_cb = (of_irq_init_cb_t)match->data;
ret = irq_init_cb(desc->dev, desc->interrupt_parent);-----執(zhí)行初始化函數(shù)
if (ret) {
kfree(desc);
continue;
}處理完的節(jié)點(diǎn)放入intc_parent_list鏈表,后面會用到
list_add_tail(&desc->list, &intc_parent_list);
}對于level 0,只有一個(gè)root interrupt controller,對于level 1,可能有若干個(gè)interrupt controller,因此要遍歷這些parent interrupt controller,以便處理下一個(gè)level的child node。
desc = list_first_entry_or_null(&intc_parent_list,
typeof(*desc), list);
if (!desc) {
pr_err("of_irq_init: children remain, but no parents\n");
break;
}
list_del(&desc->list);
parent = desc->dev;
kfree(desc);
}list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
list_del(&desc->list);
kfree(desc);
}
err:
list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
list_del(&desc->list);
kfree(desc);
}
}
只有該node中有interrupt-controller這個(gè)屬性定義,那么linux kernel就會分配一個(gè)interrupt controller的描述符(struct intc_desc)并掛入隊(duì)列。通過interrupt-parent屬性,可以確定各個(gè)interrupt controller的層次關(guān)系。在scan了所有的Device Tree中的interrupt controller的定義之后,系統(tǒng)開始匹配過程。一旦匹配到了interrupt chip列表中的項(xiàng)次后,就會調(diào)用相應(yīng)的初始化函數(shù)。如果CPU是S3C2416的話,匹配到的是irqchip的初始化函數(shù)是s3c2416_init_intc_of。
OK,我們已經(jīng)通過compatible屬性找到了適合的interrupt controller,那么如何解析reg屬性呢?我們知道,對于s3c2416的interrupt controller而言,其#interrupt-cells的屬性值是4,定義為
(1)ctrl_num表示使用哪一種類型的interrupt controller,其值的解釋如下:
- 0 ... main controller
- 1 ... sub controller
- 2 ... second main controller
(2)parent_irq。對于sub controller,parent_irq標(biāo)識了其在main controller的bit position。
(3)ctrl_irq標(biāo)識了在controller中的bit位置。
(4)type標(biāo)識了該中斷的trigger type,例如:上升沿觸發(fā)還是電平觸發(fā)。
為了更順暢的描述后續(xù)的代碼,我需要簡單的介紹2416的中斷控制器,其block diagram如下:
53個(gè)Samsung2416的中斷源被分成兩種類型,一種是需要sub寄存器進(jìn)行控制的,例如DMA,系統(tǒng)中的8個(gè)DMA中斷是通過兩級識別的,先在SRCPND寄存器中得到是DMA中斷的信息,具體是哪一個(gè)channel的DMA中斷需要繼續(xù)查詢SUBSRC寄存器。那些不需要sub寄存器進(jìn)行控制的,例如timer,5個(gè)timer的中斷可以直接從SRCPND中得到。
中斷MASK寄存器可以控制產(chǎn)生的中斷是否要報(bào)告給CPU,當(dāng)一個(gè)中斷被mask的時(shí)候,雖然SRCPND寄存器中,硬件會set該bit,但是不會影響到INTPND寄存器,從而不會向CPU報(bào)告該中斷。對于SUBMASK寄存器,如果該bit被set,也就是該sub中斷被mask了,那么即便產(chǎn)生了對應(yīng)的sub中斷,也不會修改SRCPND寄存器的內(nèi)容,只是修改SUBSRCPND中寄存器的內(nèi)容。
不過隨著硬件的演化,更多的HW block加入到SOC中,這使得中斷源不夠用了,因此中斷寄存器又被分成兩個(gè)group,一個(gè)是group 1(開始地址是0X4A000000,也就是main controller了),另外一個(gè)是group2(開始地址是0X4A000040,叫做second main controller)。group 1中的sub寄存器的起始地址是0X4A000018(也就是sub controller)。
了解了上面的內(nèi)容后,下面的定義就比較好理解了:
static struct s3c24xx_irq_of_ctrl s3c2416_ctrl[] = {
{
.name = "intc", -----------main controller
.offset = 0,
}, {
.name = "subintc", ---------sub controller
.offset = 0x18,
.parent = &s3c_intc[0],
}, {
.name = "intc2", ----------second main controller
.offset = 0x40,
}
};
對于s3c2416而言,irqchip的初始化函數(shù)是s3c2416_init_intc_of,s3c2416_ctrl作為參數(shù)傳遞給了s3c_init_intc_of,大部分的處理都是在s3c_init_intc_of函數(shù)中完成的,由于這個(gè)函數(shù)和中斷子系統(tǒng)非常相關(guān),這里就不詳述了,后續(xù)會有一份專門的文檔描述之。
4、GPIO controller的處理
暫不描述,后續(xù)會有一份專門的文檔描述GPIO sub system。
5、machine初始化
machine初始化的代碼可以沿著start_kernel->rest_init->kernel_init->kernel_init_freeable->do_basic_setup->do_initcalls路徑尋找。在do_initcalls函數(shù)中,kernel會依次執(zhí)行各個(gè)initcall函數(shù),在這個(gè)過程中,會調(diào)用customize_machine,具體如下:
static int __init customize_machine(void)
{
if (machine_desc->init_machine)
machine_desc->init_machine();
else
of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
return 0;
}
arch_initcall(customize_machine);
在這個(gè)函數(shù)中,一般會調(diào)用machine描述符中的init_machine callback函數(shù)來把各種Device Tree中定義各個(gè)設(shè)備節(jié)點(diǎn)加入到系統(tǒng)。如果machine描述符中沒有定義init_machine函數(shù),那么直接調(diào)用of_platform_populate把所有的platform device加入到kernel中。對于s3c2416,其machine描述符中的init_machine callback函數(shù)就是s3c2416_dt_machine_init,代碼如下:
static void __init s3c2416_dt_machine_init(void)
{
of_platform_populate(NULL, --------傳入NULL參數(shù)表示從root node開始scanof_default_bus_match_table, s3c2416_auxdata_lookup, NULL);
s3c_pm_init(); --------power management相關(guān)的初始化
}
由此可見,最終生成platform device的代碼來自of_platform_populate函數(shù)。該函數(shù)的邏輯比較簡單,遍歷device node global list中所有的node,并調(diào)用of_platform_bus_create處理,of_platform_bus_create函數(shù)代碼如下:
static int of_platform_bus_create(struct device_node *bus,-------------要?jiǎng)?chuàng)建的那個(gè)device node
const struct of_device_id *matches,-------要匹配的list
const struct of_dev_auxdata *lookup,------附屬數(shù)據(jù)
struct device *parent, bool strict)---------------parent指向父節(jié)點(diǎn)。strict是否要求完全匹配
{
const struct of_dev_auxdata *auxdata;
struct device_node *child;
struct platform_device *dev;
const char *bus_id = NULL;
void *platform_data = NULL;
int rc = 0;刪除確保device node有compatible屬性的代碼。
auxdata = of_dev_lookup(lookup, bus); 在傳入的lookup table尋找和該device node匹配的附加數(shù)據(jù)
if (auxdata) {
bus_id = auxdata->name;-----------------如果找到,那么就用附加數(shù)據(jù)中的靜態(tài)定義的內(nèi)容
platform_data = auxdata->platform_data;
}ARM公司提供了CPU core,除此之外,它設(shè)計(jì)了AMBA的總線來連接SOC內(nèi)的各個(gè)block。符合這個(gè)總線標(biāo)準(zhǔn)的SOC上的外設(shè)叫做ARM Primecell Peripherals。如果一個(gè)device node的compatible屬性值是arm,primecell的話,可以調(diào)用of_amba_device_create來向amba總線上增加一個(gè)amba device。
if (of_device_is_compatible(bus, "arm,primecell")) {
of_amba_device_create(bus, bus_id, platform_data, parent);
return 0;
}如果不是ARM Primecell Peripherals,那么我們就需要向platform bus上增加一個(gè)platform device了
dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);
if (!dev || !of_match_node(matches, bus))
return 0;一個(gè)device node可能是一個(gè)橋設(shè)備,因此要重復(fù)調(diào)用of_platform_bus_create來把所有的device node處理掉。
for_each_child_of_node(bus, child) {
pr_debug(" create child: %s\n", child->full_name);
rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);
if (rc) {
of_node_put(child);
break;
}
}
return rc;
}
具體增加platform device的代碼在of_platform_device_create_pdata中,代碼如下:
static struct platform_device *of_platform_device_create_pdata(
struct device_node *np,
const char *bus_id,
void *platform_data,
struct device *parent)
{
struct platform_device *dev;if (!of_device_is_available(np))---------check status屬性,確保是enable或者OK的。
return NULL;of_device_alloc除了分配struct platform_device的內(nèi)存,還分配了該platform device需要的resource的內(nèi)存(參考struct platform_device 中的resource成員)。當(dāng)然,這就需要解析該device node的interrupt資源以及memory address資源。
dev = of_device_alloc(np, bus_id, parent);
if (!dev)
return NULL;設(shè)定platform_device 中的其他成員
dev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
if (!dev->dev.dma_mask)
dev->dev.dma_mask = &dev->dev.coherent_dma_mask;
dev->dev.bus = &platform_bus_type;
dev->dev.platform_data = platform_data;if (of_device_add(dev) != 0) {------------------把這個(gè)platform device加入統(tǒng)一設(shè)備模型系統(tǒng)中
platform_device_put(dev);
return NULL;
}return dev;
}