量子密碼術(shù) 量子密碼術(shù)是密碼術(shù)與量子力學(xué)結(jié)合的產(chǎn)物,它利用了系統(tǒng)所具有的量子性質(zhì)。首先想到將量子物理用于密碼術(shù)的是美國科學(xué)家威斯納。威斯納于1970年提出,可利用單量子態(tài)制造不可偽造的“電子鈔票”。但這個設(shè)想的實現(xiàn)需要長時間保存單量子態(tài),不太現(xiàn)實。貝內(nèi)特和布拉薩德在研究中發(fā)現(xiàn),單量子態(tài)雖然不好保存但可用于傳輸信息。1984年,貝內(nèi)特和布拉薩德提出了第一個量子密碼術(shù)方案,稱為BB84方案,由此迎來了量子密碼術(shù)的新時期。 1992年,貝內(nèi)特又提出一種更簡單,但效率減半的方案,即B92方案。量子密碼術(shù)并不用于傳輸密文,而是用于建立、傳輸密碼本。根據(jù)量子力學(xué)的不確定性原理以及量子不可克隆定理,任何竊聽者的存在都會被發(fā)現(xiàn),從而保證密碼本的絕對安全,也就保證了加密信息的絕對安全。最初的量子密碼通信利用的都是光子的偏振特性,目前主流的實驗方案則用光子的相位特性進行編碼。目前,在量子密碼術(shù)實驗研究上進展最快的國家為英國、瑞士和美國。英國國防研究部于1993年首先在光纖中實現(xiàn)了基于BB84方案的相位編碼量子密鑰分發(fā),光纖傳輸長度為10公里。這項研究后來轉(zhuǎn)到英國通訊實驗室進行,到1995年,經(jīng)多方改進,在30公里長的光纖傳輸中成功實現(xiàn)了量子密鑰分發(fā)。與偏振編碼相比,相位編碼的好處是對光的偏振態(tài)要求不那么苛刻。在長距離的光纖傳輸中,光的偏振性會退化,造成誤碼率的增加。然而,瑞士日內(nèi)瓦大學(xué)1993年基于BB84方案的偏振編碼方案,在1.1公里長的光纖中傳輸1.3微米波長的光子,誤碼率僅為0.54%,并于1995年在日內(nèi)瓦湖底鋪設(shè)的23公里長民用光通信光纜中進行了實地表演,誤碼率為3.4%。1997年,他們利用法拉第鏡消除了光纖中的雙折射等影響因素,使得系統(tǒng)的穩(wěn)定性和使用的方便性大大提高,被稱為“即插即用”的量子密碼方案。美國洛斯阿拉莫斯國家實驗室,創(chuàng)造了目前光纖中量子密碼通信距離的新紀錄。他們采用類似英國的實驗裝置,通過先進的電子手段,以B92方案成功地在長達48公里的地下光纜中傳送量子密鑰,同時他們在自由空間里也獲得了成功。1999年,瑞典和日本合作,在光纖中成功地進行了40公里的量子密碼通信實驗。在中國,量子密碼通信的研究剛剛起步,中科院物理所于1995年以BB84方案在國內(nèi)首次做了演示性實驗,華東師范大學(xué)用B92方案做了實驗,但也是在距離較短的自由空間里進行的。2000年,中科院物理所與研究生院合作,在850納米的單模光纖中完成了1.1公里的量子密碼通信演示性實驗。總的來說,比起國外目前的水平,我國還有較大差距。量子力學(xué)的研究進展導(dǎo)致了新興交叉學(xué)科—量子信息學(xué)的誕生,為信息科學(xué)展示了美好的前景。另一方面,量子信息學(xué)的深入發(fā)展,遇到了許多新課題,反過來又有力地促進量子力學(xué)自身的發(fā)展。當(dāng)前量子信息學(xué)無論在理論上,還是在實驗上都在不斷取得重要突破,從而激發(fā)了研究人員更大的研究熱情。但是,實用的量子信息系統(tǒng)是宏觀尺度上的量子體系,人們要想做到有效地制備和操作這種量子體系的量子態(tài)目前還是十分困難的。 人類在20世紀能夠精確地操控航天飛機和搬動單個原子,但卻未能掌握操控量子態(tài)的有效方法。在21世紀,人類應(yīng)積極致力于量子技術(shù)的開發(fā),推動科學(xué)和技術(shù)更迅速地發(fā)展。
摘自《科技日報》