這是我做的比較. np.argsort定時在float32上,ndarray由1,000,000個元素組成.
In [1]: import numpy as npIn [2]: a = np.random.randn(1000000)In [3]: a = a.astype(np.float32)In [4]: %timeit np.argsort(a)86.1 ms ± 1.59 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
這里有一個C程序執(zhí)行相同的過程,但是在引用this answer的向量上.
#include <iostream>#include <vector>#include <cstddef>#include <algorithm>#include <opencv2/opencv.hpp>#include <numeric>#include <utility>int main(){ std::vector<float> numbers; for (int i = 0; i != 1000000; i) { numbers.push_back((float)rand() / (RAND_MAX)); } double e1 = (double)cv::getTickCount(); std::vector<size_t> idx(numbers.size()); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&numbers](const size_t &a, const size_t &b) { return numbers[a] < numbers[b];}); double e2 = (double)cv::getTickCount(); std::cout << "Finished in " << 1000 * (e2 - e1) / cv::getTickFrequency() << " milliseconds." << std::endl; return 0;}
它打印完成時間為525.908毫秒.它比numpy版慢得多.所以有人能解釋是什么讓np.argsort這么快嗎?謝謝.
Edit1:np .__ version__返回1.15.0,它運行在Python 3.6.6 | Anaconda自定義(64位)和g – 版本打印8.2.0.操作系統(tǒng)是Manjaro Linux.
Edit2:我用g中的-O2和-O3標志進行編譯,得到的結(jié)果是216.515毫秒和205.017毫秒.這是一個改進,但仍然比numpy版本慢. (Referring to this question)這被刪除了,因為我錯誤地運行了測試,我的筆記本電腦的DC適配器已拔下,這會導(dǎo)致它變慢.在公平競爭中,C陣列和矢量版本的表現(xiàn)相同(約需100ms).
Edit3:另一種方法是用C代替數(shù)組:vector numbers [1000000] ;.之后,運行時間約為100毫秒(/ -5毫秒).完整代碼:
#include <iostream>#include <vector>#include <cstddef>#include <algorithm>#include <opencv2/opencv.hpp>#include <numeric>#include <utility>int main(){ //std::vector<float> numbers; float numbers[1000000]; for (int i = 0; i != 1000000; i) { numbers[i] = ((float)rand() / (RAND_MAX)); } double e1 = (double)cv::getTickCount(); std::vector<size_t> idx(1000000); std::iota(idx.begin(), idx.end(), 0); std::sort(idx.begin(), idx.end(), [&numbers](const size_t &a, const size_t &b) { return numbers[a] < numbers[b];}); double e2 = (double)cv::getTickCount(); std::cout << "Finished in " << 1000 * (e2 - e1) / cv::getTickFrequency() << " milliseconds." << std::endl; return 0;}
解決方法:
我接受了你的實施并用10000000項測量它.花了大約1.7秒.
現(xiàn)在我介紹了一堂課
class valuePair { public: valuePair(int idx, float value) : idx(idx), value(value){}; int idx; float value;};
with初始化為
std::vector<valuePair> pairs;for (int i = 0; i != 10000000; i) { pairs.push_back(valuePair(i, (double)rand() / (RAND_MAX)));}
和排序比完成
std::sort(pairs.begin(), pairs.end(), [&](const valuePair &a, const valuePair &b) { return a.value < b.value; });
此代碼將運行時間縮短至1.1秒.這是我認為由于更好的緩存一致性,但仍然離python結(jié)果相當(dāng)遠.
來源:https://www.icode9.com/content-1-272551.html