WhitespaceAnalyzer:僅僅是去除空格,對(duì)字符沒(méi)有l(wèi)owcase化,不支持中文,會(huì)保留原文中的破折號(hào),以空格為邊界,將空格間的內(nèi)容切分為最小的語(yǔ)匯單元。
SimpleAnalyzer:功能強(qiáng)于WhitespaceAnalyzer,將所有的字符lowcase化,不支持中文,保留停用詞,并以非字母字符作為單個(gè)語(yǔ)匯單元的邊界。
StopAnalyzer:StopAnalyzer的功能超越了SimpleAnalyzer,在SimpleAnalyzer的基礎(chǔ)上增加了去除StopWords的功能,不支持中文
StandardAnalyzer:英文的處理能力同于StopAnalyzer,保留XY&Z形式的單詞,且會(huì)把email地址保留下來(lái)。支持中文采用的方法為單字切分。
以上四個(gè)Analyzer可以用下例來(lái)說(shuō)明:
輸入字符串:XY&Z mail is - xyz@sohu.com
=====Whitespace analyzer====
分析方法:空格分割
XY&Z
mail
is
-
xyz@sohu.com
=====Simple analyzer====
分析方法:空格及各種符號(hào)分割
xy
z
mail
is
xyz
sohu
com
=====stop analyzer====
分析方法:空格及各種符號(hào)分割,去掉停止詞,停止詞包括 is,are,in,on,the等無(wú)實(shí)際意義
的詞
xy
z
mail
xyz
sohu
com
=====standard analyzer====
分析方法:混合分割,包括了去掉停止詞,支持漢語(yǔ)
xy&z
mail
xyz@sohu.com
ChineseAnalyzer:來(lái)自于Lucene的sand box.性能類(lèi)似于StandardAnalyzer,缺點(diǎn)是不支持中英文混和分詞。
CJKAnalyzer:chedong寫(xiě)的CJKAnalyzer的功能在英文處理上的功能和StandardAnalyzer相同,但是在漢語(yǔ)的分詞上,不能過(guò)濾掉標(biāo)點(diǎn)符號(hào),即使用二元切分。
TjuChineseAnalyzer:自定義的,功能最為強(qiáng)大。TjuChineseAnlyzer的功能相當(dāng)強(qiáng)大,在中文分詞方面由于其調(diào)用的為ICTCLAS的java接口.所以其在中文方面性能上同與ICTCLAS.其在英文分詞上采用了Lucene的StopAnalyzer,可以去除 stopWords,而且可以不區(qū)分大小寫(xiě),過(guò)濾掉各類(lèi)標(biāo)點(diǎn)符號(hào)。
各個(gè)Analyzer的功能已經(jīng)比較介紹完畢了,現(xiàn)在咱們應(yīng)該學(xué)寫(xiě)Analyzer,如何diy自己的analyzer呢??
如何DIY一個(gè)Analyzer
咱們寫(xiě)一個(gè)Analyzer,要求有一下功能
(1) 可以處理中文和英文,對(duì)于中文實(shí)現(xiàn)的是單字切分,對(duì)于英文實(shí)現(xiàn)的是以空格切分.
(2) 對(duì)于英文部分要進(jìn)行小寫(xiě)化.
(3) 具有過(guò)濾功能,可以人工設(shè)定StopWords列表.如果不是人工設(shè)定,系統(tǒng)會(huì)給出默認(rèn)的StopWords列表.
(4) 使用P-stemming算法對(duì)于英文部分進(jìn)行詞綴處理.
代碼如下:
public final class DiyAnalyzer
extends Analyzer
{
private Set stopWords;
public static final String[] CHINESE_ENGLISH_STOP_WORDS =
{
"a", "an", "and", "are", "as", "at", "be", "but", "by",
"for", "if", "in", "into", "is", "it",
"no", "not", "of", "on", "or", "s", "such",
"t", "that", "the", "their", "then", "there", "these",
"they", "this", "to", "was", "will", "with",
"我", "我們"
};
public DiyAnalyzer()
{
this.stopWords=StopFilter.makeStopSet(CHINESE_ENGLISH_STOP_WORDS);
}
public DiyAnalyzer(String[] stopWordList)
{
this.stopWords=StopFilter.makeStopSet(stopWordList);
}
public TokenStream tokenStream(String fieldName, Reader reader)
{
TokenStream result = new StandardTokenizer(reader);
result = new LowerCaseFilter(result);
result = new StopFilter(result, stopWords);
result = new PorterStemFilter(result);
return result;
}
public static void main(String[] args)
{
//好像英文的結(jié)束符號(hào)標(biāo)點(diǎn).,StandardAnalyzer不能識(shí)別
String string = new String("我愛(ài)中國(guó),我愛(ài)天津大學(xué)!I love China!Tianjin is a City");
Analyzer analyzer = new DiyAnalyzer();
TokenStream ts = analyzer.tokenStream("dummy", new StringReader(string));
Token token;
try
{
while ( (token = ts.next()) != null)
{
System.out.println(token.toString());
}
}
catch (IOException ioe)
{
ioe.printStackTrace();
}
}
}
可以看見(jiàn)其后的結(jié)果如下:
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),1,2,<CJK>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(中,2,3,<CJK>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(國(guó),3,4,<CJK>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),6,7,<CJK>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(天,7,8,<CJK>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(津,8,9,<CJK>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(大,9,10,<CJK>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(學(xué),10,11,<CJK>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(i,12,13,<ALPHANUM>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(love,14,18,<ALPHANUM>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(china,19,24,<ALPHANUM>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(tianjin,25,32,<ALPHANUM>,1)
Token's (termText,startOffset,endOffset,type,positionIncrement) is:(citi,39,43,<ALPHANUM>,1)
到此為止這個(gè)簡(jiǎn)單的但是功能強(qiáng)大的分詞器就寫(xiě)完了,下面咱們可以嘗試寫(xiě)一個(gè)功能更強(qiáng)大的分詞器.
如何DIY一個(gè)功能更加強(qiáng)大Analyzer
譬如你有詞典,然后你根據(jù)正向最大匹配法或者逆向最大匹配法寫(xiě)了一個(gè)分詞方法,卻想在Lucene中應(yīng)用,很簡(jiǎn)單,你只要把他們包裝成Lucene的TokenStream就好了.下邊我以調(diào)用中科院寫(xiě)的ICTCLAS接口為例,進(jìn)行演示.你去中科院網(wǎng)站可以拿到此接口的free版本,誰(shuí)叫你沒(méi)錢(qián)呢,有錢(qián),你就可以購(gòu)買(mǎi)了.哈哈
好,由于ICTCLAS進(jìn)行分詞之后,在Java中,中間會(huì)以?xún)蓚€(gè)空格隔開(kāi)!too easy,我們直接使用繼承Lucene的WhiteSpaceTokenizer就好了.
所以TjuChineseTokenizer 看起來(lái)像是這樣.
public class TjuChineseTokenizer extends WhitespaceTokenizer
{
public TjuChineseTokenizer(Reader readerInput)
{
super(readerInput);
}
}
而TjuChineseAnalyzer看起來(lái)象是這樣
public final class TjuChineseAnalyzer
extends Analyzer
{
private Set stopWords;
/** An array containing some common English words that are not usually useful
for searching. */
/*
public static final String[] CHINESE_ENGLISH_STOP_WORDS =
{
"a", "an", "and", "are", "as", "at", "be", "but", "by",
"for", "if", "in", "into", "is", "it",
"no", "not", "of", "on", "or", "s", "such",
"t", "that", "the", "their", "then", "there", "these",
"they", "this", "to", "was", "will", "with",
"我", "我們"
};
*/
/** Builds an analyzer which removes words in ENGLISH_STOP_WORDS. */
public TjuChineseAnalyzer()
{
stopWords = StopFilter.makeStopSet(StopWords.SMART_CHINESE_ENGLISH_STOP_WORDS);
}
/** Builds an analyzer which removes words in the provided array. */
//提供獨(dú)自的stopwords
public TjuChineseAnalyzer(String[] stopWords)
{
this.stopWords = StopFilter.makeStopSet(stopWords);
}
/** Filters LowerCaseTokenizer with StopFilter. */
public TokenStream tokenStream(String fieldName, Reader reader)
{
try
{
ICTCLAS splitWord = new ICTCLAS();
String inputString = FileIO.readerToString(reader);
//分詞中間加入了空格
String resultString = splitWord.paragraphProcess(inputString);
System.out.println(resultString);
TokenStream result = new TjuChineseTokenizer(new StringReader(resultString));
result = new LowerCaseFilter(result);
//使用stopWords進(jìn)行過(guò)濾
result = new StopFilter(result, stopWords);
//使用p-stemming算法進(jìn)行過(guò)濾
result = new PorterStemFilter(result);
return result;
}
catch (IOException e)
{
System.out.println("轉(zhuǎn)換出錯(cuò)");
return null;
}
}
public static void main(String[] args)
{
String string = "我愛(ài)中國(guó)人民";
Analyzer analyzer = new TjuChineseAnalyzer();
TokenStream ts = analyzer.tokenStream("dummy", new StringReader(string));
Token token;
System.out.println("Tokens:");
try
{
int n=0;
while ( (token = ts.next()) != null)
{
System.out.println((n++)+"->"+token.toString());
}
}
catch (IOException ioe)
{
ioe.printStackTrace();
}
}
}
對(duì)于此程序的輸出接口可以看一下
0->Token's (termText,startOffset,endOffset,type,positionIncrement) is:(愛(ài),3,4,word,1)
1->Token's (termText,startOffset,endOffset,type,positionIncrement) is:(中國(guó),6,8,word,1)
2->Token's (termText,startOffset,endOffset,type,positionIncrement) is:(人民,10,12,word,1)
OK,經(jīng)過(guò)這樣一番講解,你已經(jīng)對(duì)Lucene的Analysis包認(rèn)識(shí)的比較好了,當(dāng)然如果你想更加了解,還是認(rèn)真讀讀源碼才好,
呵呵,源碼說(shuō)明一切!
聯(lián)系客服