1 歸一問題
【理解含義】
在解題時(shí),先求出一份是多少(即單一量),然后以單一量為標(biāo)準(zhǔn),求出所要求的數(shù)量。這類應(yīng)用題叫做歸一問題。
【數(shù)量關(guān)系】
總量÷份數(shù)=1份數(shù)量
1份數(shù)量×所占份數(shù)=所求幾份的數(shù)量
另一總量÷(總量÷份數(shù))=所求份數(shù)
【解題思路和方法】
先求出單一量,以單一量為標(biāo)準(zhǔn),求出所要求的數(shù)量。
【例題1】已知一張桌子的價(jià)錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元?
【解題】
由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價(jià)錢的(10-1)倍,由此可求得一把椅子的價(jià)錢。再根據(jù)椅子的價(jià)錢,就可求得一張桌子的價(jià)錢。
(1)一把椅子的價(jià)錢?
288÷(10-1)=32(元)
(2)一張桌子的價(jià)錢?
32×10=320(元)
答:一張桌子320元,一把椅子32元
【例題2】 買5支鉛筆要0.6元錢,買同樣的鉛筆16支,需要多少錢?
【解題】
(1)買1支鉛筆多少錢?
0.6÷5=0.12(元)
(2)買16支鉛筆需要多少錢?
0.12×16=1.92(元)
(3)列成綜合算式
0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
【例題3】 3臺拖拉機(jī)3天耕地90公頃,照這樣計(jì)算,5臺拖拉機(jī)6 天耕地多少公頃?
【解題】
(1)1臺拖拉機(jī)1天耕地多少公頃?
90÷3÷3=10(公頃)
(2)5臺拖拉機(jī)6天耕地多少公頃?
10×5×6=300(公頃)
列成綜合算式
90÷3÷3×5×6=10×30=300(公頃)
答:5臺拖拉機(jī)6 天耕地300公頃。
【例題4】 5輛汽車4次可以運(yùn)送100噸鋼材,如果用同樣的7輛汽車運(yùn)送105噸鋼材,需要運(yùn)幾次?
【解題】
(1)1輛汽車1次能運(yùn)多少噸鋼材?
100÷5÷4=5(噸)
(2)7輛汽車1次能運(yùn)多少噸鋼材?
5×7=35(噸)
(3)105噸鋼材7輛汽車需要運(yùn)幾次?
105÷35=3(次)
列成綜合算式
105÷(100÷5÷4×7)=3(次)
答:需要運(yùn)3次。
2 歸總問題
【理解含義】
解題時(shí),常常先找出“總數(shù)量”,然后再根據(jù)其它條件算出所求的問題,叫歸總問題。所謂“總數(shù)量”是指貨物的總價(jià)、幾小時(shí)(幾天)的總工作量、幾公畝地上的總產(chǎn)量、幾小時(shí)行的總路程等。
【數(shù)量關(guān)系】
1份數(shù)量×份數(shù)=總量
總量÷1份數(shù)量=份數(shù)
總量÷另一份數(shù)=另一每份數(shù)量
【解題思路和方法】
先求出總數(shù)量,再根據(jù)題意得出所求的數(shù)量。
【例題5】 工廠原來做一套衣服用布3.2米,改進(jìn)裁剪方法后,每套衣服用布2.8米。原來做791套衣服的布,現(xiàn)在可以做多少套?
【解題】
(1)這批布總共有多少米?
3.2×791=2531.2(米)
(2)現(xiàn)在可以做多少套?
2531.2÷2.8=904(套)
列成綜合算式
3.2×791÷2.8=904(套)
答:現(xiàn)在可以做904套。
【例題6】 小強(qiáng)每天讀24頁書,12天讀完了。小明每天讀36頁書,幾天可以讀完?
【解題】
(1)這本書總共多少頁?
24×12=288(頁)
(2)小明幾天可以讀完?
288÷36=8(天)
列成綜合算式
24×12÷36=8(天)
答:小明8天可以讀完。
【例題7】 食堂運(yùn)來一批蔬菜,原計(jì)劃每天吃50千克,30天慢慢消費(fèi)完這批蔬菜。后來根據(jù)大家的意見,每天比原計(jì)劃多吃10千克,這批蔬菜可以吃多少天?
【解題】
(1)這批蔬菜共有多少千克?
50×30=1500(千克)
(2)這批蔬菜可以吃多少天?
1500÷(50+10)=25(天)
列成綜合算式
50×30÷(50+10)=1500÷60=25(天)
答:這批蔬菜可以吃25天。
3 和差問題
【理解含義】
已知兩個(gè)數(shù)量的和與差,求這兩個(gè)數(shù)量各是多少,這類應(yīng)用題叫和差問題。
【數(shù)量關(guān)系】
大數(shù)=(和+差)÷ 2
小數(shù)=(和-差)÷ 2
【解題思路和方法】
簡單的題目可以直接套用公式;復(fù)雜的題目變通后再用公式。
【例題8】 甲乙兩班共有學(xué)生98人,甲班比乙班多6人,求兩班各有多少人?
【解題】
甲班人數(shù)=(98+6)÷2=52(人)
乙班人數(shù)=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
【例題9】 長方形的長和寬之和為18厘米,長比寬多2厘米,求長方形的面積。
【解題】
長=(18+2)÷2=10(厘米)
寬=(18-2)÷2=8(厘米)
長方形的面積 =10×8=80(平方厘米)
答:長方形的面積為80平方厘米。
【例題10】 有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。
【解題】
甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(32-30)=2千克,且甲是大數(shù),丙是小數(shù)。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
【例題11】 甲乙兩車原來共裝蘋果97筐,從甲車取下14筐放到乙車上,結(jié)果甲車比乙車還多3筐,兩車原來各裝蘋果多少筐?
【解題】
“從甲車取下14筐放到乙車上,結(jié)果甲車比乙車還多3筐”,這說明甲車是大數(shù),乙車是小數(shù),甲與乙的差是(14×2+3),
甲與乙的和是97,因此 甲車筐數(shù)=(97+14×2+3)÷2=64(筐)
乙車筐數(shù)=97-64=33(筐)
答:甲車原來裝蘋果64筐,乙車原來裝蘋果33筐。
4 和倍問題
【理解含義】
已知兩個(gè)數(shù)的和及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個(gè)數(shù)各是多少,這類應(yīng)用題叫做和倍問題。
【數(shù)量關(guān)系】
總和 ÷(幾倍+1)=較小的數(shù)
總和 - 較小的數(shù) = 較大的數(shù)
較小的數(shù) ×幾倍 = 較大的數(shù)
【解題思路和方法】
簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。
【例題12】 果園里有杏樹和桃樹共248棵,桃樹的棵數(shù)是杏樹的3倍,求杏樹、桃樹各多少棵?
【解題】
(1)杏樹有多少棵? 248÷(3+1)=62(棵)
(2)桃樹有多少棵? 62×3=186(棵)
答:杏樹有62棵,桃樹有186棵。
【例題13】 東西兩個(gè)倉庫共存糧480噸,東庫存糧數(shù)是西庫存糧數(shù)的1.4倍,求兩庫各存糧多少噸?
【解題】
(1)西庫存糧數(shù)=480÷(1.4+1)=200(噸)
(2)東庫存糧數(shù)=480-200=280(噸)
答:東庫存糧280噸,西庫存糧200噸。
【例題14】 甲站原有車52輛,乙站原有車32輛,若每天從甲站開往乙站28輛,從乙站開往甲站24輛,幾天后乙站車輛數(shù)是甲站的2倍?
【解題】
每天從甲站開往乙站28輛,從乙站開往甲站24輛,相當(dāng)于每天從甲站開往乙站(28-24)輛。把幾天以后甲站的車輛數(shù)當(dāng)作1倍量,這時(shí)乙站的車輛數(shù)就是2倍量,兩站的車輛總數(shù)(52+32)就相當(dāng)于(2+1)倍,
那么,幾天以后甲站的車輛數(shù)減少為
(52+32)÷(2+1)=28(輛)
所求天數(shù)為 (52-28)÷(28-24)=6(天)
答:6天以后乙站車輛數(shù)是甲站的2倍。
【例題15】 甲乙丙三數(shù)之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數(shù)各是多少?
【解題】
乙丙兩數(shù)都與甲數(shù)有直接關(guān)系,因此把甲數(shù)作為1倍量。
因?yàn)橐冶燃椎?倍少4,所以給乙加上4,乙數(shù)就變成甲數(shù)的2倍;
又因?yàn)楸燃椎?倍多6,所以丙數(shù)減去6就變?yōu)榧讛?shù)的3倍;
這時(shí)(170+4-6)就相當(dāng)于(1+2+3)倍。那么,
甲數(shù)=(170+4-6)÷(1+2+3)=28
乙數(shù)=28×2-4=52
丙數(shù)=28×3+6=90
答:甲數(shù)是28,乙數(shù)是52,丙數(shù)是90。
5 差倍問題
【理解含義】
已知兩個(gè)數(shù)的差及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個(gè)數(shù)各是多少,這類應(yīng)用題叫做差倍問題。
【數(shù)量關(guān)系】
兩個(gè)數(shù)的差÷(幾倍-1)=較小的數(shù)
較小的數(shù)×幾倍=較大的數(shù)
【解題思路和方法】
簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。
【例題16】 果園里桃樹的棵數(shù)是杏樹的3倍,而且桃樹比杏樹多124棵。求杏樹、桃樹各多少棵?
【解題】
(1)杏樹有多少棵? 124÷(3-1)=62(棵)
(2)桃樹有多少棵? 62×3=186(棵)
答:果園里杏樹是62棵,桃樹是186棵。
【例題17】 爸爸比兒子大27歲,今年,爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?
【解題】
(1)兒子年齡=27÷(4-1)=9(歲)
(2)爸爸年齡=9×4=36(歲)
答:父子二人今年的年齡分別是36歲和9歲。
【例題18】 商場改革經(jīng)營管理辦法后,本月盈利比上月盈利的2倍還多12萬元,又知本月盈利比上月盈利多30萬元,求這兩個(gè)月盈利各是多少萬元?
【解題】
如果把上月盈利作為1倍量,則(30-12)萬元就相當(dāng)于上月盈利的(2-1)倍,因此
上月盈利=(30-12)÷(2-1)=18(萬元)
本月盈利=18+30=48(萬元)
答:上月盈利是18萬元,本月盈利是48萬元。
【例題19】 糧庫有94噸小麥和138噸玉米,如果每天運(yùn)出小麥和玉米各是9噸,問幾天后剩下的玉米是小麥的3倍?
【解題】
由于每天運(yùn)出的小麥和玉米的數(shù)量相等,所以剩下的數(shù)量差等于原來的數(shù)量差(138-94)。把幾天后剩下的小麥看作1倍量,則幾天后剩下的玉米就是3倍量,那么,(138-94)就相當(dāng)于(3-1)倍,因此
剩下的小麥數(shù)量=(138-94)÷(3-1)=22(噸)
運(yùn)出的小麥數(shù)量=94-22=72(噸)
運(yùn)糧的天數(shù)=72÷9=8(天)
答:8天以后剩下的玉米是小麥的3倍。
6 倍比問題
【理解含義】
有兩個(gè)已知的同類量,其中一個(gè)量是另一個(gè)量的若干倍,解題時(shí)先求出這個(gè)倍數(shù),再用倍比的方法算出要求的數(shù),這類應(yīng)用題叫做倍比問題。
【數(shù)量關(guān)系】
總量÷一個(gè)數(shù)量=倍數(shù)
另一個(gè)數(shù)量×倍數(shù)=另一總量
【解題思路和方法】
先求出倍數(shù),再用倍比關(guān)系求出要求的數(shù)。
【例題20】 100千克油菜籽可以榨油40千克,現(xiàn)在有油菜籽3700千克,可以榨油多少?
【解題】
(1)3700千克是100千克的多少倍?
3700÷100=37(倍)
(2)可以榨油多少千克?
40×37=1480(千克)
列成綜合算式
40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
【例題21】 今年植樹節(jié)這天,某小學(xué)300名師生共植樹400棵,照這樣計(jì)算,全縣48000名師生共植樹多少棵?
【解題】
(1)48000名是300名的多少倍?
48000÷300=160(倍)
(2)共植樹多少棵?
400×160=64000(棵)
列成綜合算式
400×(48000÷300)=64000(棵)
答:全縣48000名師生共植樹64000棵。
【例題】 鳳翔縣今年蘋果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計(jì)算,全鄉(xiāng)800畝果園共收入多少元?全縣16000畝果園共收入多少元?
【解題22】
(1)800畝是4畝的幾倍?
800÷4=200(倍)
(2)800畝收入多少元?
11111×200=2222200(元)
(3)16000畝是800畝的幾倍?
16000÷800=20(倍)
(4)16000畝收入多少元?
2222200×20=44444000(元)
答:全鄉(xiāng)800畝果園共收入2222200元,
全縣16000畝果園共收入44444000元。
7 相遇問題
【理解含義】
兩個(gè)運(yùn)動的物體同時(shí)由兩地出發(fā)相向而行,在途中相遇。這類應(yīng)用題叫做相遇問題。
【數(shù)量關(guān)系】
相遇時(shí)間=總路程÷(甲速+乙速)
總路程=(甲速+乙速)×相遇時(shí)間
【解題思路和方法】
簡單的題目可直接利用公式,復(fù)雜的題目變通后再利用公式。
【例題23】 甲乙兩輛客車上午8時(shí)同時(shí)從兩個(gè)車站出發(fā),相向而行,經(jīng)過一段時(shí)間,兩車同時(shí)到達(dá)一條河的兩岸。由于河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然后按原路返回各自出發(fā)的車站,到站時(shí)已是下午2點(diǎn)。甲車每小時(shí)行40千米,乙車每小時(shí)行 45千米,兩地相距多少千米?(交換乘客的時(shí)間略去不計(jì))
【解題思路】
根據(jù)已知兩車上午8時(shí)從兩站出發(fā),下午2點(diǎn)返回原車站,可求出兩車所行駛的時(shí)間。根據(jù)兩車的速度和行駛的時(shí)間可求兩車行駛的總路程。
【解題】
下午2點(diǎn)是14時(shí)。
往返用的時(shí)間:14-8=6(時(shí))
兩地間路程:(40+45)×6÷2=85×6÷2=255(千米)
答:兩地相距255千米。
【例題24】 南京到上海的水路長392千米,同時(shí)從兩港各開出一艘輪船相對而行,從南京開出的船每小時(shí)行28千米,從上海開出的船每小時(shí)行21千米,經(jīng)過幾小時(shí)兩船相遇?
【解題】
392÷(28+21)=8(小時(shí))
答:經(jīng)過8小時(shí)兩船相遇。
【例題25】 小李和小劉在周長為400米的環(huán)形跑道上跑步,小李每秒鐘跑5米,小劉每秒鐘跑3米,他們從同一地點(diǎn)同時(shí)出發(fā),反向而跑,那么,二人從出發(fā)到第二次相遇需多長時(shí)間?
【解題】
“第二次相遇”可以理解為二人跑了兩圈。
因此總路程為400×2
相遇時(shí)間=(400×2)÷(5+3)=100(秒)
答:二人從出發(fā)到第二次相遇需100秒時(shí)間。
【例題26】 甲乙二人同時(shí)從兩地騎自行車相向而行,甲每小時(shí)行15千米,乙每小時(shí)行13千米,兩人在距中點(diǎn)3千米處相遇,求兩地的距離。
【解題】
“兩人在距中點(diǎn)3千米處相遇”是正確理解本題題意的關(guān)鍵。從題中可知甲騎得快,乙騎得慢,甲過了中點(diǎn)3千米,乙距中點(diǎn)3千米,就是說甲比乙多走的路程是(3×2)千米,因此,
相遇時(shí)間=(3×2)÷(15-13)=3(小時(shí))
兩地距離=(15+13)×3=84(千米)
答:兩地距離是84千米。
8 追及問題
【理解含義】
兩個(gè)運(yùn)動物體在不同地點(diǎn)同時(shí)出發(fā)(或者在同一地點(diǎn)而不是同時(shí)出發(fā),或者在不同地點(diǎn)又不是同時(shí)出發(fā))作同向運(yùn)動,在后面的,行進(jìn)速度要快些,在前面的,行進(jìn)速度較慢些,在一定時(shí)間之內(nèi),后面的追上前面的物體。這類應(yīng)用題就叫做追及問題。
【數(shù)量關(guān)系】
追及時(shí)間=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及時(shí)間
【解題思路和方法】
簡單的題目直接利用公式,復(fù)雜的題目變通后利用公式。
【例題27】學(xué)校組織兩個(gè)課外興趣小組去郊外活動。第一小組每小時(shí)走4.5千米,第二小組每小時(shí)行3.5千米。兩組同時(shí)出發(fā)1小時(shí)后,第一小組停下來參觀一個(gè)果園,用了1小時(shí),再去追第二小組。多長時(shí)間能追上第二小組?
【解題思路】
第一小組停下來參觀果園時(shí)間,第二小組多行了[3.5-(4.5-3.5)]?千米,也就是第一組要追趕的路程。又知第一組每小時(shí)比第二組快(?4.5-3.5)千米,由此便可求出追趕的時(shí)間。
【解題】
第一組追趕第二組的路程:
3.5-(4.5-?3.5)=3.5-1=2.5(千米)
第一組追趕第二組所用時(shí)間:
2.5÷(4.5-3.5)=2.5÷1=2.5(小時(shí))
答:第一組2.5小時(shí)能追上第二小組。
【例題28】 好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?
【解題】
(1)劣馬先走12天能走多少千米?
75×12=900(千米)
(2)好馬幾天追上劣馬?
900÷(120-75)=20(天)
列成綜合算式
75×12÷(120-75)=900÷45=20(天)
答:好馬20天能追上劣馬。
【例題29】 小明和小亮在200米環(huán)形跑道上跑步,小明跑一圈用40秒,他們從同一地點(diǎn)同時(shí)出發(fā),同向而跑。小明第一次追上小亮?xí)r跑了500米,求小亮的速度是每秒多少米。
【解題】
小明第一次追上小亮?xí)r比小亮多跑一圈,即200米,此時(shí)小亮跑了(500-200)米,要知小亮的速度,須知追及時(shí)間,即小明跑500米所用的時(shí)間。又知小明跑200米用40秒,則跑500米用[40×(500÷200)]秒,所以小亮的速度是
(500-200)÷[40×(500÷200)]=300÷100=3(米)
答:小亮的速度是每秒3米。
【例題30】 我人民解放軍追擊一股逃竄的敵人,敵人在下午16點(diǎn)開始從甲地以每小時(shí)10千米的速度逃跑,解放軍在晚上22點(diǎn)接到命令,以每小時(shí)30千米的速度開始從乙地追擊。已知甲乙兩地相距60千米,問解放軍幾個(gè)小時(shí)可以追上敵人?
【解題】
敵人逃跑時(shí)間與解放軍追擊時(shí)間的時(shí)差是(22-16)小時(shí),這段時(shí)間敵人逃跑的路程是[10×(22-6)]千米,甲乙兩地相距60千米。由此推知
追及時(shí)間=[10×(22-6)+60]÷(30-10)=220÷20=11(小時(shí))
答:解放軍在11小時(shí)后可以追上敵人。
【例題31】 一輛客車從甲站開往乙站,每小時(shí)行48千米;一輛貨車同時(shí)從乙站開往甲站,每小時(shí)行40千米,兩車在距兩站中點(diǎn)16千米處相遇,求甲乙兩站的距離。
【解題】
這道題可以由相遇問題轉(zhuǎn)化為追及問題來解決。從題中可知客車落后于貨車(16×2)千米,客車追上貨車的時(shí)間就是前面所說的相遇時(shí)間,
這個(gè)時(shí)間為
16×2÷(48-40)=4(小時(shí))
所以兩站間的距離為
(48+40)×4=352(千米)
列成綜合算式
(48+40)×[16×2÷(48-40)]=88×4=352(千米)
答:甲乙兩站的距離是352千米。
【例題32】 兄妹二人同時(shí)由家上學(xué),哥哥每分鐘走90米,妹妹每分鐘走60米。哥哥到校門口時(shí)發(fā)現(xiàn)忘記帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問他們家離學(xué)校有多遠(yuǎn)?
【解題】
要求距離,速度已知,所以關(guān)鍵是求出相遇時(shí)間。從題中可知,在相同時(shí)間(從出發(fā)到相遇)內(nèi)哥哥比妹妹多走(180×2)米,這是因?yàn)楦绺绫让妹妹糠昼姸嘧撸?0-60)米,
那么,二人從家出走到相遇所用時(shí)間為
180×2÷(90-60)=12(分鐘)
家離學(xué)校的距離為
90×12-180=900(米)
答:家離學(xué)校有900米遠(yuǎn)。
【例題33】 孫亮打算上課前5分鐘到學(xué)校,他以每小時(shí)4千米的速度從家步行去學(xué)校,當(dāng)他走了1千米時(shí),發(fā)現(xiàn)手表慢了10分鐘,因此立即跑步前進(jìn),到學(xué)校恰好準(zhǔn)時(shí)上課。后來算了一下,如果孫亮從家一開始就跑步,可比原來步行早9分鐘到學(xué)校。求孫亮跑步的速度。
【解題】 手表慢了10分鐘,就等于晚出發(fā)10分鐘,如果按原速走下去,就要遲到(10-5)分鐘,后段路程跑步恰準(zhǔn)時(shí)到學(xué)校,說明后段路程跑比走少用了 (10-5)分鐘。如果從家一開始就跑步,可比步行少9分鐘,由此可知,行1千米,跑步比步行少用[9-(10-5)]分鐘。所以
步行1千米所用時(shí)間為
1÷[9-(10-5)]=0.25(小時(shí))=15(分鐘)
跑步1千米所用時(shí)間為
15-[9-(10-5)]=11(分鐘)
跑步速度為每小時(shí)
1÷11/60=5.5(千米)
答:孫亮跑步速度為每小時(shí) 5.5千米。
9 植樹問題
【理解含義】
按相等的距離植樹,在距離、棵距、棵數(shù)這三個(gè)量之間,已知其中的兩個(gè)量,要求第三個(gè)量,這類應(yīng)用題叫做植樹問題。
【數(shù)量關(guān)系】
線形植樹 棵數(shù)=距離÷棵距+1
環(huán)形植樹 棵數(shù)=距離÷棵距
方形植樹 棵數(shù)=距離÷棵距-4
三角形植樹 棵數(shù)=距離÷棵距-3
面積植樹 棵數(shù)=面積÷(棵距×行距)
【解題思路和方法】
先弄清楚植樹問題的類型,然后可以利用公式。
【例題34】 一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?
【解題】
136÷2+1=68+1=69(棵)
答:一共要栽69棵垂柳。
【例題35】 一個(gè)圓形池塘周長為400米,在岸邊每隔4米栽一棵白楊樹,一共能栽多少棵白楊樹?
【解題】
400÷4=100(棵)
答:一共能栽100棵白楊樹。
【例題36】 一個(gè)正方形的運(yùn)動場,每邊長220米,每隔8米安裝一個(gè)照明燈,一共可以安裝多少個(gè)照明燈?
【解題】
220×4÷8-4=110-4=106(個(gè))
答:一共可以安裝106個(gè)照明燈。
【例題37】 給一個(gè)面積為96平方米的住宅鋪設(shè)地板磚,所用地板磚的長和寬分別是60厘米和40厘米,問至少需要多少塊地板磚?
【解題】
96÷(0.6×0.4)=96÷0.24=400(塊)
答:至少需要400塊地板磚。
【例題38】 一座大橋長500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個(gè)電桿,每個(gè)電桿上安裝2盞路燈,一共可以安裝多少盞路燈?
【解題】
(1)橋的一邊有多少個(gè)電桿?
500÷50+1=11(個(gè))
(2)橋的兩邊有多少個(gè)電桿?
11×2=22(個(gè))
(3)大橋兩邊可安裝多少盞路燈?
22×2=44(盞)
答:大橋兩邊一共可以安裝44盞路燈。
10 年齡問題
【理解含義】
這類問題是根據(jù)題目的內(nèi)容而得名,它的主要特點(diǎn)是兩人的年齡差不變,但是,兩人年齡之間的倍數(shù)關(guān)系隨著年齡的增長在發(fā)生變化。
【數(shù)量關(guān)系】
年齡問題往往與和差、和倍、差倍問題有著密切聯(lián)系,尤其與差倍問題的解題思路是一致的,要緊緊抓住“年齡差不變”這個(gè)特點(diǎn)。
【解題思路和方法】
可以利用“差倍問題”的解題思路和方法。
【例題39】 爸爸今年35歲,亮亮今年5歲,今年爸爸的年齡是亮亮的幾倍?明年呢?
【解題】
35÷5=7(倍)
(35+1)÷(5+1)=6(倍)
答:今年爸爸的年齡是亮亮的7倍,
明年爸爸的年齡是亮亮的6倍。
【例題40】 母親今年37歲,女兒今年7歲,幾年后母親的年齡是女兒的4倍?
【解題】
(1)母親比女兒的年齡大多少歲?
37-7=30(歲)
(2)幾年后母親的年齡是女兒的4倍?
30÷(4-1)-7=3(年)
列成綜合算式
(37-7)÷(4-1)-7=3(年)
答:3年后母親的年齡是女兒的4倍。
【例題41】 3年前父子的年齡和是49歲,今年父親的年齡是兒子年齡的4倍,父子今年各多少歲?
【解題】
今年父子的年齡和應(yīng)該比3年前增加(3×2)歲,
今年二人的年齡和為 49+3×2=55(歲)
把今年兒子年齡作為1倍量,則今年父子年齡和相當(dāng)于(4+1)倍,因此,今年兒子年齡為 55÷(4+1)=11(歲)
今年父親年齡為 11×4=44(歲)
答:今年父親年齡是44歲,兒子年齡是11歲。
【例題42】 甲對乙說:“當(dāng)我的歲數(shù)曾經(jīng)是你現(xiàn)在的歲數(shù)時(shí),你才4歲”。乙對甲說:“當(dāng)我的歲數(shù)將來是你現(xiàn)在的歲數(shù)時(shí),你將61歲”。求甲乙現(xiàn)在的歲數(shù)各是多少?
【解題】
這里涉及到三個(gè)年份:過去某一年、今年、將來某一年。列表分析:
表中兩個(gè)“□”表示同一個(gè)數(shù),兩個(gè)“△”表示同一個(gè)數(shù)。
因?yàn)閮蓚€(gè)人的年齡差總相等:□-4=△-□=61-△,也就是4,□,△,61成等差數(shù)列,所以,61應(yīng)該比4大3個(gè)年齡差,
因此二人年齡差為
(61-4)÷3=19(歲)
甲今年的歲數(shù)為
△=61-19=42(歲)
乙今年的歲數(shù)為
□=42-19=23(歲)
答:甲今年的歲數(shù)是42歲,乙今年的歲數(shù)是23歲。
11 行船問題
【理解含義】
行船問題也就是與航行有關(guān)的問題。解答這類問題要弄清船速與水速,船速是船只本身航行的速度,也就是船只在靜水中航行的速度;水速是水流的速度,船只順?biāo)叫械乃俣仁谴倥c水速之和;船只逆水航行的速度是船速與水速之差。
【數(shù)量關(guān)系】
(順?biāo)俣龋嫠俣龋?=船速
(順?biāo)俣龋嫠俣龋?=水速
順?biāo)伲酱佟?-逆水速=逆水速+水速×2
逆水速=船速×2-順?biāo)伲巾標(biāo)伲佟?
【解題思路和方法】
大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。
【例題43】 一只船順?biāo)?20千米需用8小時(shí),水流速度為每小時(shí)15千米,這只船逆水行這段路程需用幾小時(shí)?
【解題】
由條件知,順?biāo)伲酱伲伲?20÷8,而水速為每小時(shí)15千米,所以:
船速為每小時(shí) 320÷8-15=25(千米)
船的逆水速為 25-15=10(千米)
船逆水行這段路程的時(shí)間為 320÷10=32(小時(shí))
答:這只船逆水行這段路程需用32小時(shí)。
【例題44】 甲船逆水行360千米需18小時(shí),返回原地需10小時(shí);乙船逆水行同樣一段距離需15小時(shí),返回原地需多少時(shí)間?
【解題】
由題意得 甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可見 (36-20)相當(dāng)于水速的2倍,
所以, 水速為每小時(shí) (36-20)÷2=8(千米)
又因?yàn)椋?乙船速-水速=360÷15,
所以, 乙船速為 360÷15+8=32(千米)
乙船順?biāo)贋?32+8=40(千米)
所以, 乙船順?biāo)叫?60千米需要360÷40=9(小時(shí))
答:乙船返回原地需要9小時(shí)。
【例題45】 一架飛機(jī)飛行在兩個(gè)城市之間,飛機(jī)的速度是每小時(shí)576千米,風(fēng)速為每小時(shí)24千米,飛機(jī)逆風(fēng)飛行3小時(shí)到達(dá),順風(fēng)飛回需要幾小時(shí)?
【解題】
這道題可以按照流水問題來解答。
(1)兩城相距多少千米?(576-24)×3=1656(千米)
(2)順風(fēng)飛回需要多少小時(shí)?1656÷(576+24)=2.76(小時(shí))
列成綜合算式[(576-24)×3]÷(576+24)=2.76(小時(shí))
答:飛機(jī)順風(fēng)飛回需要2.76小時(shí)。
12 列車問題
【理解含義】
這是與列車行駛有關(guān)的一些問題,解答時(shí)要注意列車車身的長度。
【數(shù)量關(guān)系】
火車過橋:過橋時(shí)間=(車長+橋長)÷車速
火車追及: 追及時(shí)間=(甲車長+乙車長+距離)÷(甲車速-乙車速)
火車相遇: 相遇時(shí)間=(甲車長+乙車長+距離)÷(甲車速+乙車速)
【解題思路和方法】
大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。
【例題46】 一座大橋長2400米,一列火車以每分鐘900米的速度通過大橋,從車頭開上橋到車尾離開橋共需要3分鐘。這列火車長多少米?
【解題】
火車3分鐘所行的路程,就是橋長與火車車身長度的和。
(1)火車3分鐘行多少米?
900×3=2700(米)
(2)這列火車長多少米?
2700-2400=300(米)
列成綜合算式
900×3-2400=300(米)
答:這列火車長300米。
【例題47】 一列長200米的火車以每秒8米的速度通過一座大橋,用了2分5秒鐘時(shí)間,求大橋的長度是多少米?
【解題】
火車過橋所用的時(shí)間是2分5秒=125秒,所走的路程是(8×125)米,這段路程就是(200米+橋長),所以,橋長為
8×125-200=800(米)
答:大橋的長度是800米。
【例題48】 一列長225米的慢車以每秒17米的速度行駛,一列長140米的快車以每秒22米的速度在后面追趕,求快車從追上到追過慢車需要多長時(shí)間?
【解題】
從追上到追過,快車比慢車要多行(225+140)米,而快車比慢車每秒多行(22-17)米,因此,所求的時(shí)間為
(225+140)÷(22-17)=73(秒)
答:需要73秒。
【例題49】 一列長150米的列車以每秒22米的速度行駛,有一個(gè)扳道工人以每秒3米的速度迎面走來,那么,火車從工人身旁駛過需要多少時(shí)間?
【解題】
如果把人看作一列長度為零的火車,原題就相當(dāng)于火車相遇問題。
150÷(22+3)=6(秒)
答:火車從工人身旁駛過需要6秒鐘。
【例題50】 一列火車穿越一條長2000米的隧道用了88秒,以同樣的速度通過一條長1250米的大橋用了58秒。求這列火車的車速和車身長度各是多少?
【解題】
車速和車長都沒有變,但通過隧道和大橋所用的時(shí)間不同,是因?yàn)樗淼辣却髽蜷L??芍疖囋冢?8-58)秒的時(shí)間內(nèi)行駛了(2000-1250)米的路程,因此,火車的車速為每秒
(2000-1250)÷(88-58)=25(米)
進(jìn)而可知,車長和橋長的和為(25×58)米,
因此,車長為 25×58-1250=200(米)
答:這列火車的車速是每秒25米,車身長200米。
13 時(shí)鐘問題
【理解含義】
就是研究鐘面上時(shí)針與分針關(guān)系的問題,如兩針重合、兩針垂直、兩針成一線、兩針夾角為60度等。時(shí)鐘問題可與追及問題相類比。
【數(shù)量關(guān)系】
分針的速度是時(shí)針的12倍,
二者的速度差為11/12。
通常按追及問題來對待,也可以按差倍問題來計(jì)算。
【解題思路和方法】
變通為“追及問題”后可以直接利用公式。
【例題51】 從時(shí)針指向4點(diǎn)開始,再經(jīng)過多少分鐘時(shí)針正好與分針重合?
【解題】
鐘面的一周分為60格,分針每分鐘走一格,每小時(shí)走60格;時(shí)針每小時(shí)走5格,每分鐘走5/60=1/12格。每分鐘分針比時(shí)針多走(1-1/12)=11/12格。4點(diǎn)整,時(shí)針在前,分針在后,兩針相距20格。所以
分針追上時(shí)針的時(shí)間為 20÷(1-1/12)≈ 22(分)
答:再經(jīng)過22分鐘時(shí)針正好與分針重合。
【例題52】 四點(diǎn)和五點(diǎn)之間,時(shí)針和分針在什么時(shí)候成直角?
【解題】
鐘面上有60格,它的1/4是15格,因而兩針成直角的時(shí)候相差15格(包括分針在時(shí)針的前或后15格兩種情況)。四點(diǎn)整的時(shí)候,分針在時(shí)針后(5×4) 格,如果分針在時(shí)針后與它成直角,那么分針就要比時(shí)針多走 (5×4-15)格,如果分針在時(shí)針前與它成直角,那么分針就要比時(shí)針多走(5×4+15)格。再根據(jù)1分鐘分針比時(shí)針多走(1-1/12)格就可以求出 二針成直角的時(shí)間。
(5×4-15)÷(1-1/12)≈ 6(分)
(5×4+15)÷(1-1/12)≈ 38(分)
答:4點(diǎn)06分及4點(diǎn)38分時(shí)兩針成直角。
【例題53】 六點(diǎn)與七點(diǎn)之間什么時(shí)候時(shí)針與分針重合?
【解題】
六點(diǎn)整的時(shí)候,分針在時(shí)針后(5×6)格,分針要與時(shí)針重合,就得追上時(shí)針。這實(shí)際上是一個(gè)追及問題。
(5×6)÷(1-1/12)≈ 33(分)
答:6點(diǎn)33分的時(shí)候分針與時(shí)針重合。
14 盈虧問題
【理解含義】
根據(jù)一定的人數(shù),分配一定的物品,在兩次分配中,一次有余(盈),一次不足(虧),或兩次都有余,或兩次都不足,求人數(shù)或物品數(shù),這類應(yīng)用題叫做盈虧問題。
【數(shù)量關(guān)系】
一般地說,在兩次分配中,如果一次盈,一次虧,則有:
參加分配總?cè)藬?shù)=(盈+虧)÷分配差
如果兩次都盈或都虧,則有:
參加分配總?cè)藬?shù)=(大盈-小盈)÷分配差
參加分配總?cè)藬?shù)=(大虧-小虧)÷分配差
【解題思路和方法】
大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。
【例題54】 給幼兒園小朋友分蘋果,若每人分3個(gè)就余11個(gè);若每人分4個(gè)就少1個(gè)。問有多少小朋友?有多少個(gè)蘋果?
【解題】 按照“參加分配的總?cè)藬?shù)=(盈+虧)÷分配差”的數(shù)量關(guān)系:
(1)有小朋友多少人? (11+1)÷(4-3)=12(人)
(2)有多少個(gè)蘋果? 3×12+11=47(個(gè))
答:有小朋友12人,有47個(gè)蘋果。
【例題55】 修一條公路,如果每天修260米,修完全長就得延長8天;如果每天修300米,修完全長仍得延長4天。這條路全長多少米?
【解題】
題中原定完成任務(wù)的天數(shù),就相當(dāng)于“參加分配的總?cè)藬?shù)”,按照“參加分配的總?cè)藬?shù)=(大虧-小虧)÷分配差”的數(shù)量關(guān)系,可以得知
原定完成任務(wù)的天數(shù)為(260×8-300×4)÷(300-260)=22(天)
這條路全長為 300×(22+4)=7800(米)
答:這條路全長7800米。
【例題60】 學(xué)校組織春游,如果每輛車坐40人,就余下30人;如果每輛車坐45人,就剛好坐完。問有多少車?多少人?
【解題】
本題中的車輛數(shù)就相當(dāng)于“參加分配的總?cè)藬?shù)”,于是就有
(1)有多少車? (30-0)÷(45-40)=6(輛)
(2)有多少人? 40×6+30=270(人)
答:有6 輛車,有270人。
15 工程問題
【理解含義】
工程問題主要研究工作量、工作效率和工作時(shí)間三者之間的關(guān)系。這類問題在已知條件中,常常不給出工作量的具體數(shù)量,只提出“一項(xiàng)工程”、“一塊土地”、“一條水渠”、“一件工作”等,在解題時(shí),常常用單位“1”表示工作總量。
【數(shù)量關(guān)系】
解答工程問題的關(guān)鍵是把工作總量看作“1”,這樣,工作效率就是工作時(shí)間的倒數(shù)(它表示單位時(shí)間內(nèi)完成工作總量的幾分之幾),進(jìn)而就可以根據(jù)工作量、工作效率、工作時(shí)間三者之間的關(guān)系列出算式。
工作量=工作效率×工作時(shí)間
工作時(shí)間=工作量÷工作效率
工作時(shí)間=總工作量÷(甲工作效率+乙工作效率)
【解題思路和方法】
變通后可以利用上述數(shù)量關(guān)系的公式。
【例題61】 一項(xiàng)工程,甲隊(duì)單獨(dú)做需要10天完成,乙隊(duì)單獨(dú)做需要15天完成,現(xiàn)在兩隊(duì)合作,需要幾天完成?
【解題】
題中的“一項(xiàng)工程”是工作總量,由于沒有給出這項(xiàng)工程的具體數(shù)量,因此,把此項(xiàng)工程看作單位“1”。由于甲隊(duì)獨(dú)做需10天完成,那么每天完成這項(xiàng)工程的 1/10;乙隊(duì)單獨(dú)做需15天完成,每天完成這項(xiàng)工程的1/15;兩隊(duì)合做,每天可以完成這項(xiàng)工程的(1/10+1/15)。
由此可以列出算式: 1÷(1/10+1/15)=1÷1/6=6(天)
答:兩隊(duì)合做需要6天完成。
【例題62】 一批零件,甲獨(dú)做6小時(shí)完成,乙獨(dú)做8小時(shí)完成?,F(xiàn)在兩人合做,完成任務(wù)時(shí)甲比乙多做24個(gè),求這批零件共有多少個(gè)?
【解題】
設(shè)總工作量為1,則甲每小時(shí)完成1/6,乙每小時(shí)完成1/8,甲比乙每小時(shí)多完成(1/6-1/8),二人合做時(shí)每小時(shí)完成(1/6+1/8)。因?yàn)槎撕献鲂枰?÷(1/6+1/8)]小時(shí),這個(gè)時(shí)間內(nèi),甲比乙多做24個(gè)零件,所以
(1)每小時(shí)甲比乙多做多少零件?
24÷[1÷(1/6+1/8)]=7(個(gè))
(2)這批零件共有多少個(gè)?
7÷(1/6-1/8)=168(個(gè))
答:這批零件共有168個(gè)。
解二 上面這道題還可以用另一種方法計(jì)算:
兩人合做,完成任務(wù)時(shí)甲乙的工作量之比為 1/6∶1/8=4∶3
由此可知,甲比乙多完成總工作量的 4-3 / 4+3 =1/7
所以,這批零件共有 24÷1/7=168(個(gè))
【例題63】 一件工作,甲獨(dú)做12小時(shí)完成,乙獨(dú)做10小時(shí)完成,丙獨(dú)做15小時(shí)完成?,F(xiàn)在甲先做2小時(shí),余下的由乙丙二人合做,還需幾小時(shí)才能完成?
【解題】
必須先求出各人每小時(shí)的工作效率。如果能把效率用整數(shù)表示,就會給計(jì)算帶來方便,因此,我們設(shè)總工作量為12、10、和15的某一公倍數(shù),例如最小公倍數(shù)60,則甲乙丙三人的工作效率分別是
60÷12=5 60÷10=6 60÷15=4
因此余下的工作量由乙丙合做還需要
(60-5×2)÷(6+4)=5(小時(shí))
答:還需要5小時(shí)才能完成。
【例題64】 一個(gè)水池,底部裝有一個(gè)常開的排水管,上部裝有若干個(gè)同樣粗細(xì)的進(jìn)水管。當(dāng)打開4個(gè)進(jìn)水管時(shí),需要5小時(shí)才能注滿水池;當(dāng)打開2個(gè)進(jìn)水管時(shí),需要15小時(shí)才能注滿水池;現(xiàn)在要用2小時(shí)將水池注滿,至少要打開多少個(gè)進(jìn)水管?
【解題】
注(排)水問題是一類特殊的工程問題。往水池注水或從水池排水相當(dāng)于一項(xiàng)工程,水的流量就是工作量,單位時(shí)間內(nèi)水的流量就是工作效率。
要2小時(shí)內(nèi)將水池注滿,即要使2小時(shí)內(nèi)的進(jìn)水量與排水量之差剛好是一池水。為此需要知道進(jìn)水管、排水管的工作效率及總工作量(一池水)。只要設(shè)某一個(gè)量為單位1,其余兩個(gè)量便可由條件推出。
我們設(shè)每個(gè)同樣的進(jìn)水管每小時(shí)注水量為1,則4個(gè)進(jìn)水管5小時(shí)注水量為(1×4×5),2個(gè)進(jìn)水管15小時(shí)注水量為(1×2×15),從而可知
每小時(shí)的排水量為 (1×2×15-1×4×5)÷(15-5)=1
即一個(gè)排水管與每個(gè)進(jìn)水管的工作效率相同。由此可知
一池水的總工作量為 1×4×5-1×5=15
又因?yàn)樵?小時(shí)內(nèi),每個(gè)進(jìn)水管的注水量為 1×2,所以,2小時(shí)內(nèi)注滿一池水至少需要多少個(gè)進(jìn)水管?
(15+1×2)÷(1×2)
=8.5≈9(個(gè))
答:至少需要9個(gè)進(jìn)水管。
16 正反比例問題
【理解含義】
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個(gè)數(shù)的比的比值一定(即商一定),那么這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。正比例應(yīng)用題是正比例意義和解比例等知識的綜合運(yùn)用。
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。反比例應(yīng)用題是反比例的意義和解比例等知識的綜合運(yùn)用。
【數(shù)量關(guān)系】
判斷正比例或反比例關(guān)系是解這類應(yīng)用題的關(guān)鍵。許多典型應(yīng)用題都可以轉(zhuǎn)化為正反比例問題去解決,而且比較簡捷。
【解題思路和方法】
解決這類問題的重要方法是:把分率(倍數(shù))轉(zhuǎn)化為比,應(yīng)用比和比例的性質(zhì)去解應(yīng)用題。
正反比例問題與前面講過的倍比問題基本類似。
【例題65】 修一條公路,已修的是未修的1/3,再修300米后,已修的變成未修的1/2,求這條公路總長是多少米?
【解題】
由條件知,公路總長不變。
原已修長度∶總長度=1∶(1+3)=1∶4=3∶12
現(xiàn)已修長度∶總長度=1∶(1+2)=1∶3=4∶12
比較以上兩式可知,把總長度當(dāng)作12份,則300米相當(dāng)于(4-3)份,從而知公路總長為 300÷(4-3)×12=3600(米)
答: 這條公路總長3600米。
【例題66】 小王做4道應(yīng)用題用了28分鐘,照這樣計(jì)算,91分鐘可以做幾道應(yīng)用題?
【解題】
做題效率一定,做題數(shù)量與做題時(shí)間成正比例關(guān)系
設(shè)91分鐘可以做X應(yīng)用題 則有 28∶4=91∶X
28X=91×4 X=91×4÷28 X=13
答:91分鐘可以做13道應(yīng)用題。
【例題67】 孫亮看《十萬個(gè)為什么》這本書,每天看24頁,15天看完,如果每天看36頁,幾天就可以看完?
【解題】
書的頁數(shù)一定,每天看的頁數(shù)與需要的天數(shù)成反比例關(guān)系
設(shè)X天可以看完,就有 24∶36=X∶15
36X=24×15 X=10
答:10天就可以看完。
【例題68】 一個(gè)大矩形被分成六個(gè)小矩形,其中四個(gè)小矩形的面積如圖所示,求大矩形的面積。
【解題】
由面積÷寬=長可知,當(dāng)長一定時(shí),面積與寬成正比,所以每一上下兩個(gè)小矩形面積之比就等于它們的寬的正比。又因?yàn)榈谝恍腥齻€(gè)小矩形的寬相等,第二行三個(gè)小矩形的寬也相等。因此,
A∶36=20∶16 25∶B=20∶16
解這兩個(gè)比例,得 A=45 B=20
所以,大矩形面積為 45+36+25+20+20+16=162
答:大矩形的面積是162
17 按比例分配問題
【理解含義】
所謂按比例分配,就是把一個(gè)數(shù)按照一定的比分成若干份。這類題的已知條件一般有兩種形式:一是用比或連比的形式反映各部分占總數(shù)量的份數(shù),另一種是直接給出份數(shù)。
【數(shù)量關(guān)系】
從條件看,已知總量和幾個(gè)部分量的比;從問題看,求幾個(gè)部分量各是多少。 總份數(shù)=比的前后項(xiàng)之和
【解題思路和方法】
先把各部分量的比轉(zhuǎn)化為各占總量的幾分之幾,把比的前后項(xiàng)相加求出總份數(shù),再求各部分占總量的幾分之幾(以總份數(shù)作分母,比的前后項(xiàng)分別作分子),再按照求一個(gè)數(shù)的幾分之幾是多少的計(jì)算方法,分別求出各部分量的值。
例1 學(xué)校把植樹560棵的任務(wù)按人數(shù)分配給五年級三個(gè)班,已知一班有47人,二班有48人,三班有45人,三個(gè)班各植樹多少棵?
【解題69】
總份數(shù)為 47+48+45=140
一班植樹 560×47/140=188(棵)
二班植樹 560×48/140=192(棵)
三班植樹 560×45/140=180(棵)
答:一、二、三班分別植樹188棵、192棵、180棵。
【例題70】 用60厘米長的鐵絲圍成一個(gè)三角形,三角形三條邊的比是3∶4∶5。三條邊的長各是多少厘米?
【解題】
3+4+5=12 60×3/12=15(厘米)
60×4/12=20(厘米)
60×5/12=25(厘米)
答:三角形三條邊的長分別是15厘米、20厘米、25厘米。
【例題71】 從前有個(gè)牧民,臨死前留下遺言,要把17只羊分給三個(gè)兒子,大兒子分總數(shù)的1/2,二兒子分總數(shù)的1/3,三兒子分總數(shù)的1/9,并規(guī)定不許把羊宰割分,求三個(gè)兒子各分多少只羊。
【分析】
遇到此類問題,一半都是先找到份數(shù)的最小公倍數(shù),然后按照公倍數(shù)重新按照劃分占比,本題中的最小公倍數(shù)是18,那么老大的二分之一就是占9分,老二的三分之一就是占6分,三兒子的九分之一就是占2分,共計(jì)17分。
【解題】
如果用總數(shù)乘以分率的方法解答,顯然得不到符合題意的整數(shù)解。如果用按比例分配的方法解,則很容易得到
1/2∶1/3∶1/9=9∶6∶2
9+6+2=17 17×9/17=9
17×6/17=6 17×2/17=2
答:大兒子分得9只羊,二兒子分得6只羊,三兒子分得2只羊。
【例題72】 某工廠第一、二、三車間人數(shù)之比為8∶12∶21,第一車間比第二車間少80人,三個(gè)車間共多少人?
【解題】
80÷(12-8)×(8+12+21)=820(人)
答:三個(gè)車間一共820人。
18 百分?jǐn)?shù)問題
【理解含義】
百分?jǐn)?shù)是表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù)。百分?jǐn)?shù)是一種特殊的分?jǐn)?shù)。分?jǐn)?shù)常??梢酝ǚ帧⒓s分,而百分?jǐn)?shù)則無需;分?jǐn)?shù)既可以表示“率”,也可以表示 “量”,而百分?jǐn)?shù)只能表示“率”;分?jǐn)?shù)的分子、分母必須是自然數(shù),而百分?jǐn)?shù)的分子可以是小數(shù);百分?jǐn)?shù)有一個(gè)專門的記號“%”。
在實(shí)際中和常用到“百分點(diǎn)”這個(gè)概念,一個(gè)百分點(diǎn)就是1%,兩個(gè)百分點(diǎn)就是2%。
【數(shù)量關(guān)系】
掌握“百分?jǐn)?shù)”、“標(biāo)準(zhǔn)量”“比較量”三者之間的數(shù)量關(guān)系:
百分?jǐn)?shù)=比較量÷標(biāo)準(zhǔn)量
標(biāo)準(zhǔn)量=比較量÷百分?jǐn)?shù)
【解題思路和方法】
一般有三種基本類型:
(1) 求一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾;
(2) 已知一個(gè)數(shù),求它的百分之幾是多少;
(3) 已知一個(gè)數(shù)的百分之幾是多少,求這個(gè)數(shù)。
【例題73】 倉庫里有一批化肥,用去720千克,剩下6480千克,用去的與剩下的各占原重量的百分之幾?
【解題】
(1)用去的占 720÷(720+6480)=10%
(2)剩下的占 6480÷(720+6480)=90%
答:用去了10%,剩下90%。
【例題74】 紅旗化工廠有男職工420人,女職工525人,男職工人數(shù)比女職工少百分之幾?
【解題】
本題中女職工人數(shù)為標(biāo)準(zhǔn)量,男職工比女職工少的人數(shù)是比較量
所以 (525-420)÷525=0.2=20%
或者 1-420÷525=0.2=20%
答:男職工人數(shù)比女職工少20%。
【例題75】 紅旗化工廠有男職工420人,女職工525人,女職工比男職工人數(shù)多百分之幾?
【解題】
本題中以男職工人數(shù)為標(biāo)準(zhǔn)量,女職工比男職工多的人數(shù)為比較量,因此
(525-420)÷420=0.25=25%
或者 525÷420-1=0.25=25%
答:女職工人數(shù)比男職工多25%。
【例題76】 紅旗化工廠有男職工420人,有女職工525人,男、女職工各占全廠職工總數(shù)的百分之幾?
【解題】
(1)男職工占 420÷(420+525)=0.444=44.4%
(2)女職工占 525÷(420+525)=0.556=55.6%
答:男職工占全廠職工總數(shù)的44.4%,女職工占55.6%。
【拓展】
百分?jǐn)?shù)又叫百分率,百分率在工農(nóng)業(yè)生產(chǎn)中應(yīng)用很廣泛,常見的百分率有:
增長率=增長數(shù)÷原來基數(shù)×100%
合格率=合格產(chǎn)品數(shù)÷產(chǎn)品總數(shù)×100%
出勤率=實(shí)際出勤人數(shù)÷應(yīng)出勤人數(shù)×100%
出勤率=實(shí)際出勤天數(shù)÷應(yīng)出勤天數(shù)×100%
缺席率=缺席人數(shù)÷實(shí)有總?cè)藬?shù)×100%
發(fā)芽率=發(fā)芽種子數(shù)÷試驗(yàn)種子總數(shù)×100%
成活率=成活棵數(shù)÷種植總棵數(shù)×100%
出粉率=面粉重量÷小麥重量×100%
出油率=油的重量÷油料重量×100%
廢品率=廢品數(shù)量÷全部產(chǎn)品數(shù)量×100%
命中率=命中次數(shù)÷總次數(shù)×100%
烘干率=烘干后重量÷烘前重量×100%
及格率=及格人數(shù)÷參加考試人數(shù)×100%
19 “牛吃草”問題
關(guān)于這個(gè)問題可以參考我的另一篇文章,有專門講解"牛吃草"的解題思路。
【理解含義】
“牛吃草”問題是大科學(xué)家牛頓提出的問題,也叫“牛頓問題”。這類問題的特點(diǎn)在于要考慮草邊吃邊長這個(gè)因素。
【數(shù)量關(guān)系】
草總量=原有草量+草每天生長量×天數(shù)
【解題思路和方法】
解這類題的關(guān)鍵是求出草每天的生長量。
【例題77】 一塊草地,10頭牛20天可以把草吃完,15頭牛10天可以把草吃完。問多少頭牛5天可以把草吃完?
【解題】
草是均勻生長的,所以,草總量=原有草量+草每天生長量×天數(shù)。求“多少頭牛5天可以把草吃完”,就是說5 天內(nèi)的草總量要5 天吃完的話,得有多少頭牛? 設(shè)每頭牛每天吃草量為1,按以下步驟解答:
(1)求草每天的生長量
因?yàn)?,一方?0天內(nèi)的草總量就是10頭牛20天所吃的草,即(1×10×20);另一方面,20天內(nèi)的草總量又等于原有草量加上20天內(nèi)的生長量,所以
1×10×20=原有草量+20天內(nèi)生長量
同理 1×15×10=原有草量+10天內(nèi)生長量
由此可知 (20-10)天內(nèi)草的生長量為
1×10×20-1×15×10=50
因此,草每天的生長量為 50÷(20-10)=5
(2)求原有草量
原有草量=10天內(nèi)總草量-10內(nèi)生長量=1×15×10-5×10=100
(3)求5 天內(nèi)草總量
5 天內(nèi)草總量=原有草量+5天內(nèi)生長量=100+5×5=125
(4)求多少頭牛5 天吃完草
因?yàn)槊款^牛每天吃草量為1,所以每頭牛5天吃草量為5。
因此5天吃完草需要牛的頭數(shù) 125÷5=25(頭)
答:需要5頭牛5天可以把草吃完。
【例題78】 一只船有一個(gè)漏洞,水以均勻速度進(jìn)入船內(nèi),發(fā)現(xiàn)漏洞時(shí)已經(jīng)進(jìn)了一些水。如果有12個(gè)人淘水,3小時(shí)可以淘完;如果只有5人淘水,要10小時(shí)才能淘完。求17人幾小時(shí)可以淘完?
【解題】
這是一道變相的“牛吃草”問題。與上題不同的是,最后一問給出了人數(shù)(相當(dāng)于“牛數(shù)”),求時(shí)間。設(shè)每人每小時(shí)淘水量為1,按以下步驟計(jì)算:
(1)求每小時(shí)進(jìn)水量
因?yàn)椋?小時(shí)內(nèi)的總水量=1×12×3=原有水量+3小時(shí)進(jìn)水量
10小時(shí)內(nèi)的總水量=1×5×10=原有水量+10小時(shí)進(jìn)水量
所以,(10-3)小時(shí)內(nèi)的進(jìn)水量為 1×5×10-1×12×3=14
因此,每小時(shí)的進(jìn)水量為 14÷(10-3)=2
(2)求淘水前原有水量
原有水量=1×12×3-3小時(shí)進(jìn)水量=36-2×3=30
(3)求17人幾小時(shí)淘完
17人每小時(shí)淘水量為17,因?yàn)槊啃r(shí)漏進(jìn)水為2,所以實(shí)際上船中每小時(shí)減少的水量為(17-2),所以17人淘完水的時(shí)間是
30÷(17-2)=2(小時(shí))
答:17人2小時(shí)可以淘完水。
20 雞兔同籠問題
【理解含義】
這是古典的算術(shù)問題。已知籠子里雞、兔共有多少只和多少只腳,求雞、兔各有多少只的問題,叫做第一雞兔同籠問題。已知雞兔的總數(shù)和雞腳與兔腳的差,求雞、兔各是多少的問題叫做第二雞兔同籠問題。
【數(shù)量關(guān)系】
第一雞兔同籠問題:
假設(shè)全都是雞,則有 兔數(shù)=(實(shí)際腳數(shù)-2×雞兔總數(shù))÷(4-2)
假設(shè)全都是兔,則有 雞數(shù)=(4×雞兔總數(shù)-實(shí)際腳數(shù))÷(4-2)
第二雞兔同籠問題:
假設(shè)全都是雞,則有 兔數(shù)=(2×雞兔總數(shù)-雞與兔腳之差)÷(4+2)
假設(shè)全都是兔,則有 雞數(shù)=(4×雞兔總數(shù)+雞與兔腳之差)÷(4+2)
【解題思路和方法】
解答此類題目一般都用假設(shè)法,可以先假設(shè)都是雞,也可以假設(shè)都是兔。如果先假設(shè)都是雞,然后以兔換雞;如果先假設(shè)都是兔,然后以雞換兔。這類問題也叫置換問題。通過先假設(shè),再置換,使問題得到解決。
【例題79】 長毛兔子蘆花雞,雞兔圈在一籠里。數(shù)數(shù)頭有三十五,腳數(shù)共有九十四。請你仔細(xì)算一算,多少兔子多少雞?
【解題】
假設(shè)35只全為兔,則
雞數(shù)=(4×35-94)÷(4-2)=23(只)
兔數(shù)=35-23=12(只)
也可以先假設(shè)35只全為雞,則
兔數(shù)=(94-2×35)÷(4-2)=12(只)
雞數(shù)=35-12=23(只)
答:有雞23只,有兔12只。
【例題80】 2畝菠菜要施肥1千克,5畝白菜要施肥3千克,兩種菜共16畝,施肥9千克,求白菜有多少畝?
【解題】
此題實(shí)際上是改頭換面的“雞兔同籠”問題?!懊慨€菠菜施肥(1÷2)千克”與“每只雞有兩個(gè)腳”相對應(yīng),“每畝白菜施肥(3÷5)千克”與“每只兔有4只腳”相對應(yīng),“16畝”與“雞兔總數(shù)”相對應(yīng),“9千克”與“雞兔總腳數(shù)”相對應(yīng)。假設(shè)16畝全都是菠菜,則有
白菜畝數(shù)=(9-1÷2×16)÷(3÷5-1÷2)=10(畝)
答:白菜地有10畝。
【例題81】 李老師用69元給學(xué)校買作業(yè)本和日記本共45本,作業(yè)本每本 3 .20元,日記本每本0.70元。問作業(yè)本和日記本各買了多少本?
【解題】
此題可以變通為“雞兔同籠”問題。假設(shè)45本全都是日記本,則有
作業(yè)本數(shù)=(69-0.70×45)÷(3.20-0.70)=15(本)
日記本數(shù)=45-15=30(本)
答:作業(yè)本有15本,日記本有30本。
【例題82】 (第二雞兔同籠問題)雞兔共有100只,雞的腳比兔的腳多80只,問雞與兔各多少只?
【解題】
假設(shè)100只全都是雞,則有
兔數(shù)=(2×100-80)÷(4+2)=20(只)
雞數(shù)=100-20=80(只)
答:有雞80只,有兔20只。
【例題83】 有100個(gè)饃100個(gè)和尚吃,大和尚一人吃3個(gè)饃,小和尚3人吃1個(gè)饃,問大小和尚各多少人?
【解題】
假設(shè)全為大和尚,則共吃饃(3×100)個(gè),比實(shí)際多吃(3×100-100)個(gè),這是因?yàn)榘研『蜕幸菜愠闪舜蠛蜕?,因此我們在保證和尚總數(shù)100不變的情況下,以“小”換“大”,一個(gè)小和尚換掉一個(gè)大和尚可減少饃(3-1/3)個(gè)。因此,共有小和尚
(3×100-100)÷(3-1/3)=75(人)
共有大和尚 100-75=25(人)
答:共有大和尚25人,有小和尚75人。
21 方陣問題
【理解含義】
將若干人或物依一定條件排成正方形(簡稱方陣),根據(jù)已知條件求總?cè)藬?shù)或總物數(shù),這類問題就叫做方陣問題。
【數(shù)量關(guān)系】
(1)方陣每邊人數(shù)與四周人數(shù)的關(guān)系:
四周人數(shù)=(每邊人數(shù)-1)×4
每邊人數(shù)=四周人數(shù)÷4+1
(2)方陣總?cè)藬?shù)的求法:
實(shí)心方陣:總?cè)藬?shù)=每邊人數(shù)×每邊人數(shù)
空心方陣:總?cè)藬?shù)=(外邊人數(shù))?-(內(nèi)邊人數(shù))?
內(nèi)邊人數(shù)=外邊人數(shù)-層數(shù)×2
(3)若將空心方陣分成四個(gè)相等的矩形計(jì)算,則:
總?cè)藬?shù)=(每邊人數(shù)-層數(shù))×層數(shù)×4
【解題思路和方法】
方陣問題有實(shí)心與空心兩種。實(shí)心方陣的求法是以每邊的數(shù)自乘;空心方陣的變化較多,其解答方法應(yīng)根據(jù)具體情況確定。
【例題84】 在育才小學(xué)的運(yùn)動會上,進(jìn)行體操表演的同學(xué)排成方陣,每行22人,參加體操表演的同學(xué)一共有多少人?
【解題】
22×22=484(人)
答:參加體操表演的同學(xué)一共有484人。
【例題】 有一個(gè)3層方陣,最外邊一層每邊有10人,求全方陣的人數(shù)。
【解題】
最外層每邊10人,共有36人;
第二層每邊8人,共有28人;
第三層每邊6人,共有20人;
全陣有36+28+20=84人.
答:全方陣84人。
【例題85】 有一隊(duì)學(xué)生,排成一個(gè)中空方陣,最外層人數(shù)是52人,最內(nèi)層人數(shù)是28人,這隊(duì)學(xué)生共多少人?
【解題】
(1)中空方陣外層每邊人數(shù)=52÷4+1=14(人)
(2)中空方陣內(nèi)層每邊人數(shù)=28÷4-1=6(人)
(3)中空方陣的總?cè)藬?shù)=14×14-6×6=160(人)
答:這隊(duì)學(xué)生共160人。
【例題86】 一堆棋子,排列成正方形,多余4棋子,若正方形縱橫兩個(gè)方向各增加一層,則缺少9只棋子,問有棋子多少個(gè)?
【分析】
(1)、沒有增加邊之前剩下4個(gè)棋子,增加后缺少9個(gè),也就是將原先剩下的4個(gè)放到新的邊框中后還缺少9個(gè)就能填滿,也就是黃色新增邊框需要13個(gè)棋子就能填滿。
(2),因?yàn)槭钦叫?,根?jù)(1)可知,沒變應(yīng)該是7個(gè),應(yīng)為頂角公用一個(gè)剛好13個(gè)。
【解題】
(1)縱橫方向各增加一層所需棋子數(shù)=4+9=13(只)
(2)縱橫增加一層后正方形每邊棋子數(shù)=(13+1)÷2=7(只)
(3)原有棋子數(shù)=7×7-9=40(只)
答:棋子有40只。
【例題87】 有一個(gè)三角形樹林,頂點(diǎn)上有1棵樹,以下每排的樹都比前一排多1棵,最下面一排有5棵樹。這個(gè)樹林一共有多少棵樹?
【解題】
第一種方法: 1+2+3+4+5=15(棵)
第二種方法: (5+1)×5÷2=15(棵)
答:這個(gè)三角形樹林一共有15棵樹。
22 商品利潤問題
【理解含義】
這是一種在生產(chǎn)經(jīng)營中經(jīng)常遇到的問題,包括成本、利潤、利潤率和虧損、虧損率等方面的問題。
【數(shù)量關(guān)系】
利潤=售價(jià)-進(jìn)貨價(jià)
利潤率=(售價(jià)-進(jìn)貨價(jià))÷進(jìn)貨價(jià)×100%
售價(jià)=進(jìn)貨價(jià)×(1+利潤率)
虧損=進(jìn)貨價(jià)-售價(jià)
虧損率=(進(jìn)貨價(jià)-售價(jià))÷進(jìn)貨價(jià)×100%
【解題思路和方法】
簡單的題目可以直接利用公式,復(fù)雜的題目變通后利用公式。
【例題88】 某商品的平均價(jià)格在一月份上調(diào)了10%,到二月份又下調(diào)了10%,這種商品從原價(jià)到二月份的價(jià)格變動情況如何?
【解題】
設(shè)這種商品的原價(jià)為1,則一月份售價(jià)為(1+10%),二月份的售價(jià)為(1+10%)×(1-10%),所以二月份售價(jià)比原價(jià)下降了
1-(1+10%)×(1-10%)=1%
答:二月份比原價(jià)下降了1%。
【例題89】 某服裝店因搬遷,店內(nèi)商品八折銷售。苗苗買了一件衣服用去52元,已知衣服原來按期望盈利30%定價(jià),那么該店是虧本還是盈利?虧(盈)率是多少?
【解題】
要知虧還是盈,得知實(shí)際售價(jià)52元比成本少多少或多多少元,進(jìn)而需知成本。因?yàn)?2元是原價(jià)的80%,所以原價(jià)為(52÷80%)元;又因?yàn)樵瓋r(jià)是按期望盈利30%定的,所以成本為 52÷80%÷(1+30%)=50(元)
可以看出該店是盈利的,盈利率為 (52-50)÷50=4%
答:該店是盈利的,盈利率是4%。
【例題90】 成本0.25元的作業(yè)本1200冊,按期望獲得40%的利潤定價(jià)出售,當(dāng)銷售出80%后,剩下的作業(yè)本打折扣,結(jié)果獲得的利潤是預(yù)定的86%。問剩下的作業(yè)本出售時(shí)按定價(jià)打了多少折扣?
【解題】
問題是要計(jì)算剩下的作業(yè)本每冊實(shí)際售價(jià)是原定價(jià)的百分之幾。從題意可知,每冊的原定價(jià)是0.25×(1+40%),所以關(guān)鍵是求出剩下的每冊的實(shí)際售價(jià),為此要知道剩下的每冊盈利多少元。剩下的作業(yè)本售出后的盈利額等于實(shí)際總盈利與先售出的80%的盈利額之差,即
0.25×1200×40%×86%-0.25×1200×40%×80%=7.20(元)
剩下的作業(yè)本每冊盈利 7.20÷[1200×(1-80%)]=0.03(元)
又可知 (0.25+0.03)÷[0.25×(1+40%)]=80%
答:剩下的作業(yè)本是按原定價(jià)的八折出售的。
【例題91】 某種商品,甲店的進(jìn)貨價(jià)比乙店的進(jìn)貨價(jià)便宜10%,甲店按30%的利潤定價(jià),乙店按20%的利潤定價(jià),結(jié)果乙店的定價(jià)比甲店的定價(jià)貴6元,求乙店的定價(jià)。
【解題】
設(shè)乙店的進(jìn)貨價(jià)為1,則甲店的進(jìn)貨價(jià)為 1-10%=0.9
甲店定價(jià)為 0.9×(1+30%)=1.17
乙店定價(jià)為 1×(1+20%)=1.20
由此可得 乙店進(jìn)貨價(jià)為 6÷(1.20-1.17)=200(元)
乙店定價(jià)為 200×1.2=240(元)
答:乙店的定價(jià)是240元。
23 存款利率問題
【理解含義】
把錢存入銀行是有一定利息的,利息的多少,與本金、利率、存期這三個(gè)因素有關(guān)。利率一般有年利率和月利率兩種。年利率是指存期一年本金所生利息占本金的百分?jǐn)?shù);月利率是指存期一月所生利息占本金的百分?jǐn)?shù)。
【數(shù)量關(guān)系】
年(月)利率=利息÷本金÷存款年(月)數(shù)×100%
利息=本金×存款年(月)數(shù)×年(月)利率
本利和=本金+利息=本金×[1+年(月)利率×存款年(月)數(shù)]
【解題思路和方法】
簡單的題目可直接利用公式,復(fù)雜的題目變通后再利用公式。
【例題92】 小明存入銀行1200元,月利率0.8%,到期后連本帶利共取出1488元,求存款期多長。
【解題】
因?yàn)榇婵钇趦?nèi)的總利息是(1488-1200)元,
所以總利率為 (1488-1200)÷1200 又因?yàn)橐阎吕剩?/span>
所以存款月數(shù)為 (1488-1200)÷1200÷0.8%=30(月)
答:小明的存款期是30月即兩年半。
【例題93】 銀行定期整存整取的年利率是:二年期7.92%,三年期8.28%,五年期9%。如果甲乙二人同時(shí)各存入1萬元,甲先存二年期,到期后連本帶利改存三年期;乙直存五年期。五年后二人同時(shí)取出,那么,誰的收益多?多多少元?
【解題】
甲的總利息
[10000×7.92%×2+[10000×(1+7.92%×2)]×8.28%×3
=1584+11584×8.28%×3=4461.47(元)
乙的總利息
10000×9%×5=4500(元)
4500-4461.47=38.53(元)
答:乙的收益較多,乙比甲多38.53元。
24 溶液濃度問題
【理解含義】
在生產(chǎn)和生活中,我們經(jīng)常會遇到溶液濃度問題。這類問題研究的主要是溶劑(水或其它液體)、溶質(zhì)、溶液、濃度這幾個(gè)量的關(guān)系。例如,水是一種溶劑,被溶解的東西叫溶質(zhì),溶解后的混合物叫溶液。溶質(zhì)的量在溶液的量中所占的百分?jǐn)?shù)叫濃度,也叫百分比濃度。
【數(shù)量關(guān)系】
溶液=溶劑+溶質(zhì)
濃度=溶質(zhì)÷溶液×100%
【解題思路和方法】
簡單的題目可直接利用公式,復(fù)雜的題目變通后再利用公式。
【例題94】 王老師有16%的糖水50克,(1)要把它稀釋成10%的糖水,需加水多少克?(2)若要把它變成30%的糖水,需加糖多少克?
【解題】
(1)需要加水多少克? 50×16%÷10%-50=30(克)
(2)需要加糖多少克? 50×(1-16%)÷(1-30%)-50
=10(克)
答:(1)需要加水30克,(2)需要加糖10克。
【例題95】 要把30%的糖水與15%的糖水混合,配成25%的糖水600克,需要30%和15%的糖水各多少克?
【解題】
假設(shè)全用30%的糖水溶液,那么含糖量就會多出
600×(30%-25%)=30(克)
這是因?yàn)?0%的糖水多用了。于是,我們設(shè)想在保證總重量600克不變的情況下,用15% 的溶液來“換掉”一部分30%的溶液。這樣,每“換掉”100克,就會減少糖 100×(30%-15%)=15(克) 所以需要“換掉”30%的溶液(即“換上”15%的溶液) 100×(30÷15)=200(克)
由此可知,需要15%的溶液200克。
需要30%的溶液 600-200=400(克)
答:需要15%的糖水溶液200克,需要30%的糖水400克。
【例題96】 甲容器有濃度為12%的鹽水500克,乙容器有500克水。把甲中鹽水的一半倒入乙中,混合后再把乙中現(xiàn)有鹽水的一半倒入甲中,混合后又把甲中的一部分鹽水倒入乙中,使甲乙兩容器中的鹽水同樣多。求最后乙中鹽水的百分比濃度。
【解題】
由條件知,倒了三次后,甲乙兩容器中溶液重量相等,各為500克,因此,只要算出乙容器中最后的含鹽量,便會知所求的濃度。下面列表推算:
由以上推算可知,
乙容器中最后鹽水的百分比濃度為 24÷500=4.8%
答:乙容器中最后的百分比濃度是4.8%。
25 構(gòu)圖布數(shù)問題
【理解含義】
這是一種數(shù)學(xué)游戲,也是現(xiàn)實(shí)生活中常用的數(shù)學(xué)問題。所謂“構(gòu)圖”,就是設(shè)計(jì)出一種圖形;所謂“布數(shù)”,就是把一定的數(shù)字填入圖中?!皹?gòu)圖布數(shù)”問題的關(guān)鍵是要符合所給的條件。
【數(shù)量關(guān)系】
根據(jù)不同題目的要求而定。
【解題思路和方法】
通常多從三角形、正方形、圓形和五角星等圖形方面考慮。按照題意來構(gòu)圖布數(shù),符合題目所給的條件。
【例題97】 十棵樹苗子,要栽五行子,每行四棵子,請你想法子。
【解題】
符合題目要求的圖形應(yīng)是一個(gè)五角星。
4×5÷2=10
因?yàn)槲褰切堑?條邊交叉重復(fù),應(yīng)減去一半。
【例題98】 九棵樹苗子,要栽十行子,每行三棵子,請你想法子。
【解題】
符合題目要求的圖形是兩個(gè)倒立交叉的等腰三角形,
一個(gè)三角形的頂點(diǎn)在另一個(gè)三角形底邊的中線上。
【例題99】 九棵樹苗子,要栽三行子,每行四棵子,請你想法子。
【解題】
符合題目要求的圖形是一個(gè)三角形,每邊栽4棵樹,三個(gè)頂點(diǎn)上重復(fù)應(yīng)減去,正好9棵。 4×3-3=9
【例題100】 把12拆成1到7這七個(gè)數(shù)中三個(gè)不同數(shù)的和,有幾種寫法?請?jiān)O(shè)計(jì)一種圖形,填入這七個(gè)數(shù),每個(gè)數(shù)只填一處,且每條線上三個(gè)數(shù)的和都等于12。
在這五個(gè)算式中,4出現(xiàn)三次,其余的1、2、3、5、6、7各出現(xiàn)兩次,因此,4應(yīng)位于三條線的交點(diǎn)處,其余數(shù)都位于兩條線的交點(diǎn)處。據(jù)此,我們可以設(shè)計(jì)出以下三種圖形:
【解題】
共有五種寫法,即
12=1+4+7
12=1+5+6
12=2+3+7
12=2+4+6
12=3+4+5
26 幻方問題
【理解含義】
把n×n個(gè)自然數(shù)排在正方形的格子中,使各行、各列以及對角線上的各數(shù)之和都相等,這樣的圖叫做幻方。最簡單的幻方是三級幻方。
【數(shù)量關(guān)系】
每行、每列、每條對角線上各數(shù)的和都相等,這個(gè)“和”叫做“幻和”。
三級幻方的幻和=45÷3=15
五級幻方的幻和=325÷5=65
【解題思路和方法】
首先要確定每行、每列以及每條對角線上各數(shù)的和(即幻和),其次是確定正中間方格的數(shù),然后再確定其它方格中的數(shù)。
(1)、a+b+c+d+e+f+g+h+i=1+2+3+4+5+6+7+8+9=45
(2)、根據(jù)圖形可得,每一行或者每一列是總數(shù)的1/3,即45/3=15
(3)、九個(gè)數(shù)在這八條線上反復(fù)出現(xiàn)構(gòu)成幻和時(shí),每個(gè)數(shù)用到的次數(shù)不全相同,最中心的那個(gè)數(shù)要用到四次(即出現(xiàn)在中行、中列、和兩條對角線這四條線上),四角的四個(gè)數(shù)各用到三次,其余的四個(gè)數(shù)各用到兩次。看來,用到四次的“中心數(shù)”地位重要,宜優(yōu)先考慮。
(4)、設(shè)“中心數(shù)”為e,因?yàn)棣冻霈F(xiàn)在四條線上,而每條線上三個(gè)數(shù)之和等于15,所以 (1+2+3+4+5+6+7+8+9)+(4-1)e=15×4
即 45+3e=60 所以 中心數(shù)e=5
【例題101】 把1,2,3,4,5,6,7,8,9這九個(gè)數(shù)填入九個(gè)方格中,使每行、每列、每條對角線上三個(gè)數(shù)的和相等。
【解題】
幻和的3倍正好等于這九個(gè)數(shù)的和,所以幻和為
(1+2+3+4+5+6+7+8+9)÷3=45÷3=15
接著用奇偶分析法尋找其余四個(gè)偶數(shù)的位置,它們分別在四個(gè)角,再確定其余四個(gè)奇數(shù)的位置,它們分別在中行、中列,進(jìn)一步嘗試,容易得到正確的結(jié)果。
【例題102】 把2,3,4,5,6,7,8,9,10這九個(gè)數(shù)填到九個(gè)方格中,使每行、每列、以及對角線上的各數(shù)之和都相等。
【解題】
只有三行,三行用完了所給的9個(gè)數(shù),所以每行三數(shù)之和為
(2+3+4+5+6+7+8+9+10)÷3=18
假設(shè)符合要求的數(shù)都已經(jīng)填好,那么三行、三列、兩條對角線共8行上的三個(gè)數(shù)之和都等于18,我們看18能寫成哪三個(gè)數(shù)之和:
最大數(shù)是10:18=10+6+2=10+5+3
最大數(shù)是9: 18=9+7+2=9+6+3=9+5+4
最大數(shù)是8: 18=8+7+3=8+6+4
最大數(shù)是7: 18=7+6+5 剛好寫成8個(gè)算式。
首先確定正中間方格的數(shù)。第二橫行、第二豎行、兩個(gè)斜行都用到正中間方格的數(shù),共用了四次。觀察上述8個(gè)算式,只有6被用了4次,所以正中間方格中應(yīng)填6。
然后確定四個(gè)角的數(shù)。四個(gè)角的數(shù)都用了三次,而上述8個(gè)算式中只有9、7、5、3被用了三次,所以9、7、5、3應(yīng)填在四個(gè)角上。但還應(yīng)兼顧兩條對角線上三個(gè)數(shù)的和都為18。
最后確定其它方格中的數(shù)。如圖。
27 抽屜原則問題
【理解含義】
把3只蘋果放進(jìn)兩個(gè)抽屜中,會出現(xiàn)哪些結(jié)果呢?要么把2只蘋果放進(jìn)一個(gè)抽屜,剩下的一個(gè)放進(jìn)另一個(gè)抽屜;要么把3只蘋果都放進(jìn)同一個(gè)抽屜中。這兩種情況可用一句話表示:一定有一個(gè)抽屜中放了2只或2只以上的蘋果。這就是數(shù)學(xué)中的抽屜原則問題。
【數(shù)量關(guān)系】
基本的抽屜原則是:如果把n+1個(gè)物體(也叫元素)放到n個(gè)抽屜中,那么至少有一個(gè)抽屜中放著2個(gè)或更多的物體(元素)。
抽屜原則可以推廣為:如果有m個(gè)抽屜,有k×m+r(0<r≤m)個(gè)元素那么至少有一個(gè)抽屜中要放(k+1)個(gè)或更多的元素。
通俗地說,如果元素的個(gè)數(shù)是抽屜個(gè)數(shù)的k倍多一些,那么至少有一個(gè)抽屜要放(k+1)個(gè)或更多的元素。
【解題思路和方法】
(1)改造抽屜,指出元素;
(2)把元素放入(或取出)抽屜;
(3)說明理由,得出結(jié)論。
【例題103】 育才小學(xué)有367個(gè)1999年出生的學(xué)生,那么其中至少有幾個(gè)學(xué)生的生日是同
一天的?
【解題】
由于1999年是潤年,全年共有366天,可以看作366個(gè)“抽屜”,把367個(gè)1999年出生的學(xué)生看作367個(gè)“元素”。367個(gè)“元素”放進(jìn)366個(gè)“抽屜”中,至少有一個(gè)“抽屜”中放有2個(gè)或更多的“元素”。
這說明至少有2個(gè)學(xué)生的生日是同一天的。
【例題104】 據(jù)說人的頭發(fā)不超過20萬跟,如果陜西省有3645萬人,根據(jù)這些數(shù)據(jù),你知道陜西省至少有多少人頭發(fā)根數(shù)一樣多嗎?
【解題】
人的頭發(fā)不超過20萬根,可看作20萬個(gè)“抽屜”,3645萬人可看作3645萬個(gè)“元素”,把3645萬個(gè)“元素”放到20萬個(gè)“抽屜”中,得到
3645÷20=182……5 根據(jù)抽屜原則的推廣規(guī)律,可知k+1=183
答:陜西省至少有183人的頭發(fā)根數(shù)一樣多。
【例題105】 一個(gè)袋子里有一些球,這些球僅只有顏色不同。其中紅球10個(gè),白球9個(gè),黃球8個(gè),藍(lán)球2個(gè)。某人閉著眼睛從中取出若干個(gè),試問他至少要取多少個(gè)球,才能保證至少有4個(gè)球顏色相同?
【解題】
把四種顏色的球的總數(shù)(3+3+3+2)=11 看作11個(gè)“抽屜”,那么,至少要?。?1+1)個(gè)球才能保證至少有4個(gè)球的顏色相同。
答;他至少要取12個(gè)球才能保證至少有4個(gè)球的顏色相同。
28 公約公倍問題
【理解含義】
需要用公約數(shù)、公倍數(shù)來解答的應(yīng)用題叫做公約數(shù)、公倍數(shù)問題。
【數(shù)量關(guān)系】
絕大多數(shù)要用最大公約數(shù)、最小公倍數(shù)來解答。
【解題思路和方法】
先確定題目中要用最大公約數(shù)或者最小公倍數(shù),再求出答案。最大公約數(shù)和最小公倍數(shù)的求法,最常用的是“短除法”。
【例題106】 一張硬紙板長60厘米,寬56厘米,現(xiàn)在需要把它剪成若干個(gè)大小相同的最大的正方形,不許有剩余。問正方形的邊長是多少?
【解題】
硬紙板的長和寬的最大公約數(shù)就是所求的邊長。
60和56的最大公約數(shù)是4。
答:正方形的邊長是4厘米。
【例題107】 甲、乙、丙三輛汽車在環(huán)形馬路上同向行駛,甲車行一周要36分鐘,乙車行一周要30分鐘,丙車行一周要48分鐘,三輛汽車同時(shí)從同一個(gè)起點(diǎn)出發(fā),問至少要多少時(shí)間這三輛汽車才能同時(shí)又在起點(diǎn)相遇?
【解題】
要求多少時(shí)間才能在同一起點(diǎn)相遇,這個(gè)時(shí)間必定同時(shí)是36、30、48的倍數(shù)。因?yàn)閱栔辽僖嗌贂r(shí)間,所以應(yīng)是36、30、48的最小公倍數(shù)。 36、30、48的最小公倍數(shù)是720。
答:至少要720分鐘(即12小時(shí))這三輛汽車才能同時(shí)又在起點(diǎn)相遇。
【例題108】 一個(gè)四邊形廣場,邊長分別為60米,72米,96米,84米,現(xiàn)要在四角和四邊植樹,若四邊上每兩棵樹間距相等,至少要植多少棵樹?
【解題】
相鄰兩樹的間距應(yīng)是60、72、96、84的公約數(shù),要使植樹的棵數(shù)盡量少,須使相鄰兩樹的間距盡量大,那么這個(gè)相等的間距應(yīng)是60、72、96、84這幾個(gè)數(shù)的最大公約數(shù)12。
所以,至少應(yīng)植樹 (60+72+96+84)÷12=26(棵)
答:至少要植26棵樹。
【例題109】 一盒圍棋子,4個(gè)4個(gè)地?cái)?shù)多1個(gè),5個(gè)5個(gè)地?cái)?shù)多1個(gè),6個(gè)6個(gè)地?cái)?shù)還多1個(gè)。又知棋子總數(shù)在150到200之間,求棋子總數(shù)。
【解題】
如果從總數(shù)中取出1個(gè),余下的總數(shù)便是4、5、6的公倍數(shù)。因?yàn)?、5、6的最小公倍數(shù)是60,又知棋子總數(shù)在150到200之間,所以這個(gè)總數(shù)為
60×3+1=181(個(gè))
答:棋子的總數(shù)是181個(gè)。
29 最值問題
【理解含義】
科學(xué)的發(fā)展觀認(rèn)為,國民經(jīng)濟(jì)的發(fā)展既要講求效率,又要節(jié)約能源,要少花錢多辦事,辦好事,以最小的代價(jià)取得最大的效益。這類應(yīng)用題叫做最值問題。
【數(shù)量關(guān)系】
一般是求最大值或最小值。
【解題思路和方法】
按照題目的要求,求出最大值或最小值。
【例題200】 在火爐上烤餅,餅的兩面都要烤,每烤一面需要3分鐘,爐上只能同時(shí)放兩塊餅,現(xiàn)在需要烤三塊餅,最少需要多少分鐘?
【解題】
先將兩塊餅同時(shí)放上烤,3分鐘后都熟了一面,這時(shí)將第一塊餅取出,放入第三塊餅,翻過第二塊餅。再過3分鐘取出熟了的第二塊餅,翻過第三塊餅,又放入第一塊餅烤另一面,再烤3分鐘即可。這樣做,用的時(shí)間最少,為9分鐘。
答:最少需要9分鐘。
【例題201】 在一條公路上有五個(gè)卸煤場,每相鄰兩個(gè)之間的距離都是10千米,已知1號煤場存煤100噸,2號煤場存煤200噸,5號煤場存煤400噸,其余兩個(gè)煤場是空的。現(xiàn)在要把所有的煤集中到一個(gè)煤場里,每噸煤運(yùn)1千米花費(fèi)1元,集中到幾號煤場花費(fèi)最少?
【解題】
我們采用嘗試比較的方法來解答。
集中到1號場總費(fèi)用為 1×200×10+1×400×40=18000(元)
集中到2號場總費(fèi)用為 1×100×10+1×400×30=13000(元)
集中到3號場總費(fèi)用為 1×100×20+1×200×10+1×400×10=12000(元)
集中到4號場總費(fèi)用為 1×100×30+1×200×20+1×400×10=11000(元)
集中到5號場總費(fèi)用為 1×100×40+1×200×30=10000(元)
經(jīng)過比較,顯然,集中到5號煤場費(fèi)用最少。
答:集中到5號煤場費(fèi)用最少。
【例題202】 北京和上海同時(shí)制成計(jì)算機(jī)若干臺,北京可調(diào)運(yùn)外地10臺,上海可調(diào)運(yùn)外地4臺?,F(xiàn)決定給重慶調(diào)運(yùn)8臺,給武漢調(diào)運(yùn)6臺,
若每臺運(yùn)費(fèi)如右表,問如何調(diào)運(yùn)才使運(yùn)費(fèi)最?。?/span>
【解題】
北京調(diào)運(yùn)到重慶的運(yùn)費(fèi)最高,因此,北京
往重慶應(yīng)盡量少調(diào)運(yùn)。這樣,把上海的4臺全都調(diào)
往重慶,再從北京調(diào)往重慶4臺,調(diào)往武漢6臺,運(yùn)費(fèi)就會最少,其數(shù)額為
500×4+800×4+400×6=7600(元)
答:上海調(diào)往重慶4臺,北京調(diào)往武漢6臺,調(diào)往重慶4臺,這樣運(yùn)費(fèi)最少。
30 列方程問題
【理解含義】
把應(yīng)用題中的未知數(shù)用字母Χ代替,根據(jù)等量關(guān)系列出含有未知數(shù)的等式——方程,通過解這個(gè)方程而得到應(yīng)用題的答案,這個(gè)過程,就叫做列方程解應(yīng)用題。
【數(shù)量關(guān)系】
方程的等號兩邊數(shù)量相等。
【解題思路和方法】
可以概括為“審、設(shè)、列、解、驗(yàn)、答”六字法。
(1)審:認(rèn)真審題,弄清應(yīng)用題中的已知量和未知量各是什么,問題中的等量關(guān)系是什么。
(2)設(shè):把應(yīng)用題中的未知數(shù)設(shè)為Χ。
(3)列;根據(jù)所設(shè)的未知數(shù)和題目中的已知條件,按照等量關(guān)系列出方程。
(4)解;求出所列方程的解。
(5)驗(yàn):檢驗(yàn)方程的解是否正確,是否符合題意。
(6)答:回答題目所問,也就是寫出答問的話。
同學(xué)們在列方程解應(yīng)用題時(shí),一般只寫出四項(xiàng)內(nèi)容,即設(shè)未知數(shù)、列方程、解方程、答語。設(shè)未知數(shù)時(shí)要在Χ后面寫上單位名稱,在方程中已知數(shù)和未知數(shù)都不帶單位名稱,求出的Χ值也不帶單位名稱,在答語中要寫出單位名稱。檢驗(yàn)的過程不必寫出,但必須檢驗(yàn)。
【例題203】 甲乙兩班共90人,甲班比乙班人數(shù)的2倍少30人,求兩班各有多少人?
【解題】
第一種方法:設(shè)乙班有Χ人,則甲班有(90-Χ)人。
找等量關(guān)系:甲班人數(shù)=乙班人數(shù)×2-30人。
列方程: 90-Χ=2Χ-30
解方程得 Χ=40 從而知 90-Χ=50
第二種方法:設(shè)乙班有Χ人,則甲班有(2Χ-30)人。
列方程 (2Χ-30)+Χ=90
解方程得 Χ=40 從而得知 2Χ-30=50
答:甲班有50人,乙班有40人。
【例題204】 雞兔35只,共有94只腳,問有多少兔?多少雞?
【解題】
第一種方法:設(shè)兔為Χ只,則雞為(35-Χ)只,兔的腳數(shù)為4Χ個(gè),雞的腳數(shù)為2(35-Χ)個(gè)。根據(jù)等量關(guān)系“兔腳數(shù)+雞腳數(shù)=94”可列出方程 4Χ+2(35-Χ)=94 解方程得 Χ=12 則35-Χ=23
第二種方法:可按“雞兔同籠”問題來解答。假設(shè)全都是雞,
則有 兔數(shù)=(實(shí)際腳數(shù)-2×雞兔總數(shù))÷(4-2)
所以 兔數(shù)=(94-2×35)÷(4-2)=12(只)
雞數(shù)=35-12=23(只)
答:雞是23只,兔是12只。
【例題205】 倉庫里有化肥940袋,兩輛汽車4次可以運(yùn)完,已知甲汽車每次運(yùn)125袋,乙汽車每次運(yùn)多少袋?
【解題】
第一種方法:求出甲乙兩車一次共可運(yùn)的袋數(shù),再減去甲車一次運(yùn)的袋數(shù),即是所求。 940÷4-125=110(袋)
第二種方法:從總量里減去甲汽車4次運(yùn)的袋數(shù),即為乙汽車共運(yùn)的袋數(shù),再除以4,即是所求。 (940-125×4)÷4=110(袋)
第三種方法:設(shè)乙汽車每次運(yùn)Χ袋,可列出方程 940÷4-Χ=125
解方程得 Χ=110
第四種方法:設(shè)乙汽車每次運(yùn)Χ袋,依題意得
(125+Χ)×4=940 解方程得 Χ=110
答:乙汽車每次運(yùn)110袋。