輪廓匹配在定位測量應(yīng)用中對其匹配的精度有更高的要求,通常的像素級的匹配結(jié)果難以滿足其要求。本文給出了一種具有亞像素精度的快速輪廓匹配定位方法,其進行數(shù)學(xué)計算的基礎(chǔ)為二值圖像的距離變換。
二值圖像距離變換的概念由Rosenfeld和Pfaltz于1966年其論文中提出,目前廣泛應(yīng)用于計算機圖形學(xué),計算機視覺及GIS空間分析等領(lǐng)域,其基本含義是計算一個圖像中非零像素點到最近的零像素點的距離,也就是對每一各非零像素點計算其到零像素點的最短距離,并將該距離值賦值給該非零像素位置,從而將一幅二值圖像變換為一幅距離圖像。OpenCV通過cv::distanceTransform()函數(shù),給出了該功能的快速實現(xiàn)方法。并通過參數(shù)的方式給出了距離的幾種定義方式,如歐式距離、馬氏距離、倒角距離等。
高精度輪廓匹配的算法實現(xiàn)步驟:
假設(shè)待匹配的兩個輪廓分別為A和B
(1) 將輪廓A柵格化并生成為一幅二值圖像Ia,其中輪廓點為255,背景點為0;
(2) 將二值圖Ia進行距離變換得到距離圖Id;
(3) 通過一個變換描述輪廓B和輪廓A之間的關(guān)系,如平移變換、剛體變換、仿射變換等;
(4) 通過一定的搜索策略或者最優(yōu)化方法搜索輪廓B在距離圖Id中的最佳變換參數(shù),并輸出。
在上述過程中(4)是最關(guān)鍵的一步,具體的搜索策略可考慮使用Powell搜索、分支定界搜索或者Gauss-Newton方法。下面給出了使用Gauss-Newton方法實現(xiàn)求解平移變換的代碼,僅供參考。其它復(fù)雜的變換可參考此過程完成。
1 數(shù)據(jù)柵格化,并距離變換
- int GetRasterDistanceImage(cv::Point2f* refPoints, int pntsNum, double resolution,
- int& offX, int& offY, cv::Mat& rasterDistImg)
- {
- double maxX, minX, maxY, minY;
- int i;
- for (i = 0; i < pntsNum; ++ i)
- {
- maxX = refPoints[i].x;
- minX = refPoints[i].x;
- maxY = refPoints[i].y;
- minY = refPoints[i].y;
- break;
- }
- for ( ; i < pntsNum; ++ i)
- {
- if (refPoints[i].x > maxX)
- maxX = refPoints[i].x;
- if (refPoints[i].x < minX)
- minX = refPoints[i].x;
- if (refPoints[i].y > maxY)
- maxY = refPoints[i].y;
- if (refPoints[i].y < minY)
- minY = refPoints[i].y;
- }
- int nX = int((maxX - minX) / resolution) + 200;
- int nY = int((maxY - minY) / resolution) + 200;
- cv::Mat rasterImg;
- rasterImg.create(nY, nX, CV_8UC1);
- memset(rasterImg.data, 0xFF, nY * nX);
- double realCenterX = (maxX + minX) / 2.0f;
- double realCenterY = (maxY + minY) / 2.0f;
- int offsetX = nX / 2 - int(realCenterX / resolution + 0.5f);
- int offsetY = nY / 2 - int(realCenterY / resolution + 0.5f);
- uchar* dat = (uchar*)(rasterImg.data);
- for (i = 0; i < pntsNum; ++ i)
- {
- if (validateMask[i] == 0)
- continue;
- int x = (int)floor(refPoints[i].x / resolution + 0.5f) + offsetX;
- int y = nY - ((int)floor(refPoints[i].y / resolution + 0.5f) + offsetY);
- *(dat + nX * y + x) = 0;
- }
- cv::distanceTransform(rasterImg, rasterDistImg, CV_DIST_C, 3);
- offX = offsetX;
- offY = offsetY;
- return 1;
- }
- void MatchReferencePoints(cv::Mat& rasterDistImg, cv::Point2f* rasterPoints, int pointsNum , double& offX, double& offY)
- {
- offX = 0.0f;
- offY = 0.0f;
- cv::Mat imgB = rasterDistImg;
- double* pL = new double[pointsNum];
- double* pA = new double[pointsNum * 2];
- double a_b[2] = {0};
- double deltaX[2];
- double AL[2];
- double MM[4];
- double va0, va1, va2, va3, va4;
- double sx, sy;
- double pError = 0.0f;
- for (int i = 0; i < 100; ++ i)
- {
- double error = 0.0f;
- for (int j = 0; j < pointsNum; ++ j)
- {
- sx = myPoints[j].x + a_b[0];
- sy = myPoints[j].y + a_b[1];
- va0 = GetDataValue(imgB, sx, sy);
- va1 = GetDataValue(imgB, sx + 0.5, sy);
- va2 = GetDataValue(imgB, sx - 0.5, sy);
- va3 = GetDataValue(imgB, sx, sy + 0.5);
- va4 = GetDataValue(imgB, sx, sy - 0.5);
- pA[j] = va1 - va2;
- pA[j + pointsNum] = va3 - va4;
- pL[j] = 0.0f - va0;
- error += pL[j] * pL[j];
- }
- if (i == 0)
- pError = error;
- else if (error > pError)
- break;
- pError = error;
- int nOff_M = 0;
- for(int j = 0; j < 2; ++ j){
- for(int jj = 0; jj < 2; ++ jj){
- MM[nOff_M + jj] = 0.0;
- for(int kk = 0; kk < pointsNum; ++ kk)
- MM[nOff_M + jj] += pA[j * pointsNum + kk] * pA[jj * pointsNum + kk];
- } // M = A * A(T)
- nOff_M += 2;
- }
- cv::Mat cvMatM(2, 2, CV_64FC1, MM);
- cv::invert(cvMatM, cvMatM);
- for (int j = 0; j < 2; ++ j)
- {
- AL[j] = 0.0f;
- for (int kk = 0; kk < pointsNum; ++ kk)
- AL[j] += pA[j * pointsNum + kk] * pL[kk];
- }
- for (int j = 0; j < 2; ++ j)
- {
- deltaX[j] = 0.0f;
- for (int jj = 0; jj < 2; ++ jj)
- deltaX[j] += MM[j * 2+ jj] * AL[jj];
- }
- int s = 0;
- for (; s < 2; ++ s)
- {
- if (fabs(deltaX[s]) > 0.0001)
- break;
- }
- if (s == 2)
- break;
- a_b[0] += deltaX[0];
- a_b[1] += deltaX[1];
- }
- offX = a_b[0];
- offY = a_b[1];
- delete[] pL;
- delete[] pA;
- delete[] myPoints;
- double temp = sqrt(pError / pointsNum);
- }