第六章 總結(jié)和討論 |
第6.1.節(jié) 總結(jié)信息抽取是近十年來新發(fā)展起來的領(lǐng)域。 MUC 等國際研討會(huì)給予高度關(guān)注,并提出了評(píng)價(jià)這類系統(tǒng)的方法,定義了評(píng)價(jià)指標(biāo)體系。 信息抽取技術(shù)的研究對象包括結(jié)構(gòu)化、半結(jié)構(gòu)化和自由式文檔。對于自由式文檔,多數(shù)采用了自然語言處理的方法,而其他兩類文檔的處理則多數(shù)是基于分隔符的。 網(wǎng)頁是信息抽取技術(shù)研究的重點(diǎn)之一。通常用分裝器從一特定網(wǎng)站上抽取信息。用一系列能處理不同網(wǎng)站的分裝器就能將數(shù)據(jù)統(tǒng)一表示,并獲得它們之間的關(guān)系。 分裝器的建造通常是費(fèi)事費(fèi)力的,而且需要專門知識(shí)。加上網(wǎng)頁動(dòng)態(tài)變化,維護(hù)分裝器的成本將很高。因此,如何自動(dòng)構(gòu)建分裝器便成為主要的問題。通常采用的方法包括基于歸納學(xué)習(xí)的機(jī)器學(xué)習(xí)方法。 有若干研究系統(tǒng)被開發(fā)出來。這些系統(tǒng)使用機(jī)器學(xué)習(xí)算法針對網(wǎng)上信息源生成抽取規(guī)則。 ShopBot , WIEN , SoftMealy 和 STALKER 生成的分裝器以分隔符為基礎(chǔ),能處理結(jié)構(gòu)化程度高的網(wǎng)站。 RAPIER , WHISK 和 SRV 能處理結(jié)構(gòu)化程度稍差的信息源。所采用的抽取方法與傳統(tǒng)的 IE 方法一脈相承,而學(xué)習(xí)算法多用關(guān)系學(xué)習(xí)法。 網(wǎng)站信息抽取和分裝器生成技術(shù)可在一系列的應(yīng)用領(lǐng)域內(nèi)發(fā)揮作用。目前只有比價(jià)購物方面的商業(yè)應(yīng)用比較成功,而最出色的系統(tǒng)包括 Jango , Junglee 和 MySimon 。 第6.2.節(jié) 討論目前的搜索引擎并不能收集到網(wǎng)上數(shù)據(jù)庫內(nèi)的信息。根據(jù)用戶的查詢請求,搜索引擎能找到相關(guān)的網(wǎng)頁,但不能把上面的信息抽取出來。“暗藏網(wǎng)”不斷增加,因此有必要開發(fā)一些工具把相關(guān)信息從網(wǎng)頁上抽取并收集起來。 由于網(wǎng)上信息整合越來越重要,雖然網(wǎng)站信息抽取的研究比較新,但將不斷發(fā)展。機(jī)器學(xué)習(xí)方法的使用仍將成為主流方法,因?yàn)樘幚韯?dòng)態(tài)的海量信息需要自動(dòng)化程度高的技術(shù)。在文獻(xiàn) [52] 中提出,結(jié)合不同類型的方法,以開發(fā)出適應(yīng)性強(qiáng)的系統(tǒng),這應(yīng)是一個(gè)有前途的方向。在文獻(xiàn) [36] 中,一種混合語言知識(shí)和句法特征的方法也被提出來。 本文介紹的系統(tǒng)多數(shù)是針對 HTML 文檔的。以后幾年 XML 的使用將被普及。 HTML 描述的是文檔的表現(xiàn)方式,是文檔的格式語言。 XML 則可以告訴你文檔的意義,即定義內(nèi)容而不只是形式。這雖然使分裝器的生成工作變得簡單,但不能排除其存在的必要性。 將來的挑戰(zhàn)是建造靈活和可升級(jí)的分裝器自動(dòng)歸納系統(tǒng),以適應(yīng)不斷增長的動(dòng)態(tài)網(wǎng)絡(luò)的需要。 |
參考文獻(xiàn) |
[1] S. Abiteboul. Querying Semistructured Data. Proceedings of the International Conference on Database Theory (ICDT), , January 1997. [2] B. Adelberg. NoDoSE - A tool for Semi-Automatically Extracting Semistructured Data from Text Documents. Proceedings ACM SIGMOD International Conference on Management of Data, Seat- tle, June 1998. [3] D. E. Appelt, D. J. Israel. Introduction to Information Extraction Technology. Tutorial for IJCAI-99, , August 1999. [4] N. Ashish, C. A. Knoblock. Semi-automatic Wrapper Generation for Internet Information Sources. Second IFCIS Conference on Cooperative Information Systems (CoopIS), olina, June 1997. [5] N. Ashish, C. A. Knoblock. Wrapper Generation for semistructured Internet Sources. SIGMOD Record, Vol. 26, No. 4, pp. 8--15, December 1997. [6] P. Atzeni, G. Mecca. Cut & Paste. Proceedings of the 16‘th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS‘97), , May 1997. [7] M. Bauer, D. Dengler. TrIAs - An Architecture for Trainable Information Assistants. Workshop on AI and Information Integration, in conjunction with the 15‘th National Conference on Artificial Intelligence (AAAI-98), , July 1998. [8] P. Berka. Intelligent Systems on the Internet. http://lisp.vse.cz/ berka/ai-inet.htm, Laboratory of Intelligent Systems, University of Economics, [9] L. Bright, J. R. Gruser, L. Raschid, M. E. Vidal. A Wrapper Generation Toolkit to Specify and Construct Wrappers for Web Accessible Data Sources (WebSources). Computer Systems Special Issue on Semantics on the WWW, Vol. 14 No. 2, March 1999. [10] S. Brin. Extracting Patterns and Relations from the World Wide Web. International Workshop on the Web and Databases (WebDB‘98), , March 1998. [11] M. E. Califf, R. J. Mooney. Relational Learning of Pattern-Match Rules for Information Extraction. Proceedings of the ACL Workshop on Natural Language , July 1997. [12] M. E. Califf. Relational Learning Techniques for Natural Language Information Extraction. Ph.D. thesis, Department of Computer Sciences, , August 1998. Technical Report AI98-276. [13] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, J. Widom. The TSIMMIS Project: Integration of Heterogeneous Information Sources. In Proceedings of IPSJ Conference, pp. 7--18, , Japan, October 1994. [14] B. Chidlovskii, U. M. Borghoff, P-Y. Chevalier. Towards Sophisticated Wrapping of Web-based Information Repositories. Proceedings of the 5‘th International RIAO Conference, , June 1997. [15] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, S. Slattery. Learning to Extract Symbolic Knowledge from the World Wide Web. Proceedings of the 15‘th National Conference on Artificial Intelligence (AAAI-98), , , July 1998. [16] M. Craven, S. Slattery, K. Nigam. First-Order Learning for Web Mining. Proceedings of the 10‘th European Conference on Machine , April 1998. [17] R. B. Doorenbos, O. Etzioni, D. S. Weld. A Scalable Comparison-Shopping Agent for the World Wide Web. Technical report UW-CSE-, , 1996. [18] R. B. Doorenbos, O. Etzioni, D. S. Weld. A Scalable Comparison-Shopping Agent for the World-Wide-Web. Proceedings of the first International Conference on Autonomous Agents, , February 1997. [19] O. Etzioni Moving up the Information Food Chain: Deploying Softbots on the World Wide Web. AI Magazine, 18(2):11-18, 1997. [20] D. Florescu, A. Levy, A. Mendelzon. Database Techniques for the World Wide Web: A Survey. ACM SIGMOD Record, Vol. 27, No. 3, September 1998. [21] D. Freitag. Information Extraction from HTML: Application of a General Machine Learning Ap- proach. Proceedings of the 15‘th National Conference on Artificial Intelligence (AAAI-98), , , July 1998. [22] D. Freitag. Machine Learning for Information Extraction in Informal Domains. Ph.D. dissertation, , November 1998. [23] D. Freitag. Multistrategy Learning for Information Extraction. Proceedings of the 15‘th International Conference on Machine Learning (ICML-98), , , July 1998. [24] R. Gaizauskas, Y. Wilks. Information Extraction: Beyond Document Retrieval. Computational Linguistics and Chinese Language Processing, vol. 3, no. 2, pp. 17--60, August 1998, [25] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, J. Widom. Integrating and Accessing Heterogeneous Information Sources in TSIMMIS. In Proceedings of the AAAI Symposium on Information Gathering, pp. 61--64, Stan- ford, , March 1995. [26] S. Grumbach and G. Mecca. In Search of the Lost Schema. Proceedings of the International Conference on Database Theory (ICDT‘99), , January 1999. [27] J-R. Gruser, L. Raschid, M. E. Vidal, L. Bright. Wrapper Generation for Web Accessible Data Source. Proceedings of the 3‘rd IFCIS International Conference on Cooperative Information Systems (CoopIS-98), New York, August 1998. [28] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, A. Crespo. Extracting Semistructured Information from Web. Proceedings of the Workshop on Management of Semistructured Data, , Ari- zona, May 1997. [29] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig, V. Vassalos. Template-Based Wrappers in the TSIMMIS System. Proceedings of the 26‘th SIGMOD International Conference on Management of Data, , , May 1997. [30] C-H. Hsu. Initial Results on Wrapping Semistructured Web Pages with Finite-State Transducers and Contextual Rules. Workshop on AI and Information Integration, in conjunction with the 15‘th National Conference on Artificial Intelligence (AAAI-98), , July 1998. [31] C-H. Hsu and M-T Dung. Generating Finite-Sate Transducers for semistructured Data Extraction From the Web. Information systems, Vol 23. No. 8, pp. 521--538, 1998. [32] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, P. J. Modi, I. Muslea, A. G. Philpot, S. Tejada. Modeling Web Sources for Information Integration. Proceedings of the 15‘th National Conference on Artificial Intelligence (AAAI-98), , , July 1998. [33] N. Kushmerick, D. S. Weld, R. Doorenbos. Wrapper Induction for Information Extraction. 15‘th International Joint Conference on Artificial Intelligence (IJCAI-97), , August 1997. [34] N. Kushmerick. Wrapper Induction for Information Extraction. Ph.D. Dissertation, . Technical Report UW-CSE-, 1997. [35] N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Workshop on AI and Information Integration, in conjunction with the 15‘th National Conference on Artificial Intelligence (AAAI-98), , July 1998. [36] Kushmerick, N. Gleaning the Web. IEEE Intelligent Systems, 14(2), March/April 1999. [37] S. Lawrence, C.l. Giles. Searching the World Wide Web. Science magazine, v. 280, pp. 98--100, April 1998. [38] A. Y. Levy, A. Rajaraman, J. J. Ordille. Querying Hetereogeneous Information Sources Using Source Descriptions. Proceedings 22‘nd VLDB Conference, , September 1996. [39] S. Muggleton, C. Feng. Efficient Induction of Logic Programs. Proceedings of the First Conference on Algorithmic Learning Theory, , 1990. [40] Extraction Patterns: From Information Extraction to Wrapper Induction. Information Sciences Institute, , 1998. [41] Extraction Patterns for Information Extraction Tasks: A Survey. Workshop on Machine Learning for Information Extraction, , July 1999. [42] Muslea, S. Minton, C. Knoblock. STALKER: Learning Extraction Rules for Semistructured, Web-based Information Sources. Workshop on AI and Information Integration, in conjunction with the 15‘th National Conference on Artificial Intelligence (AAAI-98), , July 1998. [43] Muslea, S. Minton, C. Knoblock. Wrapper Induction for Semistructured Web-based Information Sources. Proceedings of the Conference on Automatic Learning and Discovery CONALD-98, , June 1998. [44] Muslea, S. Minton, C. Knoblock. A Hierarchical Approach to Wrapper Induction. Third International Conference on Autonomous Agents, (Agents‘99), Seattle, May 1999. [45] S. Nestorov, S. Aboteboul, R. Motwani. Inferring Structure in Semistructured Data. Proceedings of the 13‘th International Conference on Data Engineering (ICDE‘97), , , April 1997. [46] STS Prasad, A. Rajaraman. Virtual Database Technology, XML, and the Evolution of the Web. Data Engineering, Vol. 21, No. 2, June 1998. [47] J.R. Quinlan, R. M. Cameron-Jones. FOIL: A Midterm Report. European Conference on Machine Learning, , 1993. [48] A. Rajaraman. Transforming the Internet into a Database. Workshop on Reuse of Web information, in conjunction with WWW7, Brisbane, April 1998. [49] A. Sahuguet, F. Azavant. WysiWyg Web Wrapper Factory (W http://cheops.cis.upenn.edu/ sahuguet/WAPI/wapi.ps.gz, nia, August 1998. [50] D. Smith, M. Lopez. Information Extraction for Semistructured Documents. Proceedings of the Workshop on Management of Semistructured Data, in conjunction with PODS/SIGMOD, , , May 1997. [51] S. Soderland. Learning to Extract Text-based Information from the World Wide Web. Proceedings of the 3‘rd International Conference on Knowledge Discovery and Data Mining (KDD), , August 1997. [52] S. Soderland. Learning Information Extraction Rules for Semistructured and Free Text. Machine Learning, 1999. [53] K. Zechner. A Literature Survey on Information Extraction and Text Summarization. Term paper, , 1997. [54] About mySimon. http://www.mysimon.com/about mysimon/company/backgrounder.anml |
聯(lián)系客服