大數(shù)法則:數(shù)量和次數(shù)足夠多的情況下,概率論的結(jié)果越接近準(zhǔn)確值。
意思就是說我們精確算出來的一件事物發(fā)生的概率,起初可能并不會按照我們計算出來的結(jié)果進(jìn)行。
舉例:向空中拋硬幣,雖然我們知道每次正面和背面朝上的概率都是1/2,50%、那也不意味著,我們這次拋出的結(jié)果是正面朝上,下次就一定下面朝上。
即是連續(xù)10次,15次正面朝上,50次正面朝上,下一次出現(xiàn)正面或者反面的概率還是50%。這一點很多人不了解,因為無論之前開出的結(jié)果是多少次連續(xù)正面或反面向上,但下次拋硬幣時,硬幣只有兩個面,不是正面就是反面,各50%概率出現(xiàn),和之前已經(jīng)連續(xù)開出多少次正面或反面朝上(次數(shù)再多)沒有任何關(guān)系。
所以要正確的算出下一次的概率,一定要避免這樣的錯誤。大部分人都會覺得已經(jīng)連續(xù)多次很多次正面朝上后,下一次背面朝上的概率就會增加。這種判斷是錯誤的。
因此彩票歷史走勢圖,和股市歷史走勢圖,確實是方便了查看歷史結(jié)果,但同樣迷惑了大部分人,感覺上根據(jù)歷史走勢做出下一次交易有很大的獲勝概率。
連續(xù)出現(xiàn)2次、5次、10次、15次,50次正面和背面連續(xù)朝上也是可能的,連續(xù)次數(shù)越多概率就越低,但不是意味著就不會發(fā)生。
連續(xù)出現(xiàn)正面或背面朝上多少次的概率也是可以計算的。
比如連續(xù)出現(xiàn)2次正面朝上的概率是25%,100次里面大約會有25次會是連續(xù)兩次正面朝上;
連續(xù)5次正面朝上的概率是≈0.031%,100次里面大約會有3次是連續(xù)5次正面朝上;
連續(xù)10次正面朝上的概率是≈0.00098%,10萬次里面大約會有98次是連續(xù)10次正面朝上…………以此類推……
這個結(jié)論數(shù)據(jù)告訴我們:彩票里面的倍投投注技巧,最終的結(jié)果就是破產(chǎn)(騙局)。懂得概率論的人,很本不會玩彩票和跟賭場博弈(原理跟彩票一樣),因為在無限次開獎的情況下,連續(xù)30次開出正面或背面朝上也是可能的(只要次數(shù)足夠多),也就是說只要玩的次數(shù)足夠多連續(xù)猜錯30次是可能的。連續(xù)猜正確30次也是可能的(久賭必輸原理)。
而倍投彩票玩法,只要投注正確就從1元起投,即使連續(xù)正確30次,也不過30元。從100元起投連續(xù)正確30次,也不過300元。
同樣是倍投彩票玩法,只要投注錯誤就翻倍下注,假設(shè)出現(xiàn)連續(xù)錯誤30次,那么1翻2翻4翻8翻16翻……到第30次的累計投注金額是:10個億。不會算的百度哈!
即使是連續(xù)錯誤倍投20次累計投注金額也需要:100萬元。
那么用輸了就3倍倍投呢?1、3、9、27、81……每次翻3倍這種玩法了,連續(xù)輸15次就是:1500萬。
在無限次玩下去時,連續(xù)錯誤15或20次是不是一定能發(fā)生???正規(guī)賭場根本不需要作弊。不怕你贏錢就怕你不來!
學(xué)會了算概率論就要避免以下這情況的出現(xiàn),因為出現(xiàn)的概率低就不在乎:獲勝、獲勝、還是獲勝,連續(xù)獲勝10次,50次,99次,第100次時把先前所有的獲勝全部虧光??!
大數(shù)法則告訴我們,只要我們能算出概率是多少,無論概率是高還是低,只要進(jìn)行的次數(shù)足夠多,我們獲得的概率就≈我們算出的概率值。
概率論對我們有什么益處呢?
聽聽德國的證券投資之父“安德烈·科斯托拉尼”,是怎么說的
我不能保證我投資的每次都是獲利的,但我能做到100次投資里有51次是賺的,我的投資生涯就靠這多出的這1次,取得成功的。
當(dāng)然他的意思是在每次收益和風(fēng)險都相同的情況下,若有1%的優(yōu)勢,長期不斷投資下來就是賺的,累計起來,賺的錢越來越多。
1%的優(yōu)勢是他個人舉例,現(xiàn)實中肯定要比這個多些,只是為了方便大家理解。
概率論讓我們知道一件事發(fā)生的概率,大數(shù)法則告訴我們只要進(jìn)行的次數(shù)足夠多,我們獲得的結(jié)果就是概率結(jié)果。
因此我們在收益和虧損相同的條件下,只要我們有概率上的優(yōu)勢,我們就持續(xù)的進(jìn)行下去,大數(shù)法則將會是我們獲得最終的勝利!
但在“賠率”的條件下在,我們有時候在大數(shù)法則概率上站著優(yōu)勢,我們卻不能最終獲利,這又是為什么?