在Python中,數(shù)據(jù)庫并不是存儲(chǔ)大量結(jié)構(gòu)化數(shù)據(jù)的最簡單解決方案。dataset提供了一個(gè)簡單的抽象層,可以刪除大多數(shù)直接的 SQL 語句,而無需完整的 ORM 模型,數(shù)據(jù)庫可以像 JSON 文件或 NoSQL 存儲(chǔ)一樣使用。
# connecting to a SQLite database
db = dataset.connect('sqlite:///mydatabase.db')
# connecting to a MySQL database with user and password
db = dataset.connect('mysql://user:password@localhost/mydatabase')
# connecting to a PostgreSQL database
db = dataset.connect('postgresql://scott:tiger@localhost:5432/mydatabase')
# get a reference to the table 'user'
table = db['user']
將數(shù)據(jù)存儲(chǔ)在只需傳遞一個(gè)dict即可插入。不需要?jiǎng)?chuàng)建列名稱和年齡——數(shù)據(jù)集會(huì)自動(dòng)執(zhí)行此操作:
# Insert a new record.
table.insert(dict(name='John Doe', age=46, country='China'))
# dataset will create 'missing' columns any time you insert a dict with an unknown key
table.insert(dict(name='Jane Doe', age=37, country='France', gender='female'))
table.update(dict(name='John Doe', age=47), ['name'])
id
列。with dataset.connect() as tx:
tx['user'].insert(dict(name='John Doe', age=46, country='China'))
db = dataset.connect()
db.begin()
try:
db['user'].insert(dict(name='John Doe', age=46, country='China'))
db.commit()
except:
db.rollback()
也支持嵌套事務(wù):
db = dataset.connect()
with db as tx1:
tx1['user'].insert(dict(name='John Doe', age=46, country='China'))
with db as tx2:
tx2['user'].insert(dict(name='Jane Doe', age=37, country='France', gender='female'))
>>> print(db.tables)
[u'user']
列出表中所有可用的列user
:
>>> print(db['user'].columns)
[u'id', u'country', u'age', u'name', u'gender']
len()
獲得表中的總行數(shù):>>> print(len(db['user']))
2
現(xiàn)在讓我們從表中獲取一些真實(shí)數(shù)據(jù):
users = db['user'].all()
如果我們只是想遍歷表中的所有行,我們可以省略all():
for user in db['user']:
print(user['age'])
我們可以使用find()搜索特定條目find_one():
# All users from China
chinese_users = table.find(country='China')
# Get a specific user
john = table.find_one(name='John Doe')
# Find multiple at once
winners = table.find(id=[1, 3, 7])
# Find by comparison operator
elderly_users = table.find(age={'>=': 70})
possible_customers = table.find(age={'between': [21, 80]})
# Use the underlying SQLAlchemy directly
elderly_users = table.find(table.table.columns.age >= 70)
使用 distinct()我們可以在一個(gè)或多個(gè)列中獲取一組具有唯一值的行:
# Get one user per country
db['user'].distinct('country')
最后,您可以使用row_type參數(shù)來選擇返回結(jié)果的數(shù)據(jù)類型:
import dataset
from stuf import stuf
db = dataset.connect('sqlite:///mydatabase.db', row_type=stuf)
現(xiàn)在內(nèi)容將在對(duì)象中返回stuf(基本上,dict 其元素可以作為屬性 ( item.name) 以及索引 ( item['name']) 訪問的對(duì)象。
當(dāng)然,您使用數(shù)據(jù)庫的主要原因是您希望使用 SQL 查詢的全部功能。下面是你如何運(yùn)行它們dataset:
result = db.query('SELECT country, COUNT(*) c FROM user GROUP BY country')
for row in result:
print(row['country'], row['c'])
該query()方法還可用于訪問底層的SQLAlchemy 核心 API,它允許以編程方式構(gòu)建更復(fù)雜的查詢:
table = db['user'].table
statement = table.select(table.c.name.like('%John%'))
result = db.query(statement)
聯(lián)系客服