數(shù)學(xué)廣角——鴿巢問題
第一課時(shí) 創(chuàng)作人:王玉環(huán)
課 題:鴿巢問題
教學(xué)內(nèi)容:教材第68-70頁例1、例2,及“做一做”的第1題,及第71頁練習(xí)十三的1-2題。
教學(xué)目標(biāo):
1、知識(shí)與技能:了解“鴿巢問題”的特點(diǎn),理解“鴿巢原理”的含義。使學(xué)生學(xué)會(huì)用此原理解決簡(jiǎn)單的實(shí)際問題。
2、過程與方法:經(jīng)歷探究“鴿巢原理”的學(xué)習(xí)過程,體驗(yàn)觀察、猜測(cè)、實(shí)驗(yàn)、推理等活動(dòng)的學(xué)習(xí)方法,滲透數(shù)形結(jié)合的思想。
3、情感、態(tài)度和價(jià)值觀:通過用“鴿巢問題”解決簡(jiǎn)單的實(shí)際問題,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生感受數(shù)學(xué)的魅力。
教學(xué)重難點(diǎn):
重點(diǎn):引導(dǎo)學(xué)生把具體問題轉(zhuǎn)化成“鴿巢問題”。
難點(diǎn):找出“鴿巢問題”解決的竅門進(jìn)行反復(fù)推理。
教學(xué)準(zhǔn)備:課件。
教學(xué)過程:
一.情境導(dǎo)入
二、探究新知
1.教學(xué)例1.(課件出示例題1情境圖)
思考問題:把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,總有1個(gè)筆筒里至少有2支鉛筆。為什么呢?“總有”和“至少”是什么意思?
學(xué)生通過操作發(fā)現(xiàn)規(guī)律→理解關(guān)鍵詞的含義→探究證明→認(rèn)識(shí)“鴿巢問題”的學(xué)習(xí)過程來解決問題。
(1)操作發(fā)現(xiàn)規(guī)律:通過吧4支鉛筆放進(jìn)3個(gè)筆筒中,可以發(fā)現(xiàn):不管怎么放,總有1鴿筆筒里至少有2支鉛筆。
(2)理解關(guān)鍵詞的含義:“總有”和“至少”是指把4支鉛筆放進(jìn)3個(gè)筆筒中,不管怎么放,一定有1個(gè)筆筒里的鉛筆數(shù)大于或等于2支。
(3)探究證明。
方法一:用“枚舉法”證明。 方法二:用“分解法”證明。把4分解成3個(gè)數(shù)。
由圖可知,把4分解成3個(gè)數(shù),與枚舉法相似,也有4中情況,每一種情況分得的3個(gè)數(shù)中,至少有1個(gè)數(shù)是不小于2的數(shù)。
方法三:用“假設(shè)法”證明。
通過以上幾種方法證明都可以發(fā)現(xiàn):把4只鉛筆放進(jìn)3個(gè)筆筒中,無論怎么放,總有1個(gè)筆筒里至少放進(jìn)2只鉛筆。
(4)認(rèn)識(shí)“鴿巢問題”
像上面的問題就是“鴿巢問題”,也叫“抽屜問題”。在這里,4支鉛筆是要分放的物體,就相當(dāng)于4只“鴿子”,“3個(gè)筆筒”就相當(dāng)于3個(gè)“鴿巢”或“抽屜”,把此問題用“鴿巢問題”的語言描述就是把4只鴿子放進(jìn)3個(gè)籠子,總有1個(gè)籠子里至少有2只鴿子。
這里的“總有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鴿子最多的那個(gè)“籠子”里鴿子“最少”的個(gè)數(shù)。
小結(jié):只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個(gè)筆筒里至少放進(jìn)2支鉛筆。
如果放的鉛筆數(shù)比筆筒的數(shù)量多2,那么總有1個(gè)筆筒至少放2支鉛筆;如果放的鉛筆比筆筒的數(shù)量多3,那么總有1個(gè)筆筒里至少放2只鉛筆
小結(jié):只要放的鉛筆數(shù)比筆筒的數(shù)量多,就總有1個(gè)筆筒里至少放2支鉛筆。
(5)歸納總結(jié):鴿巢原理(一):如果把m個(gè)物體任意放進(jìn)n個(gè)抽屜里(m>n,且n是非零自然數(shù)),那么一定有一個(gè)抽屜里至少放進(jìn)了放進(jìn)了2個(gè)物體。
2、教學(xué)例2(課件出示例題2情境圖)
思考問題:
(一)把7本書放進(jìn)3個(gè)抽屜,不管怎么放,總有1個(gè)抽屜里至少有3本書。為什么呢?
(二)如果有8本書會(huì)怎樣呢?10本書呢?
學(xué)生通過“探究證明→得出結(jié)論”的學(xué)習(xí)過程來解決問題(一)。(1)探究證明。
方法一:用數(shù)的分解法證明。
把7分解成3個(gè)數(shù)的和。把7本書放進(jìn)3個(gè)抽屜里,共有如下8種情況:
由圖可知,每種情況分得的3個(gè)數(shù)中,至少有1個(gè)數(shù)不小于3,也就是每種分法中最多那個(gè)數(shù)最小是3,即總有1個(gè)抽屜至少放進(jìn)3本書。
方法二:用假設(shè)法證明。
把7本書平均分成3份,7÷3=2(本)......1(本),若每個(gè)抽屜放2本,則還剩1本。如果把剩下的這1本書放進(jìn)任意1個(gè)抽屜中,那么這個(gè)抽屜里就有3本書。
(2)得出結(jié)論。
通過以上兩種方法都可以發(fā)現(xiàn):7本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有1個(gè)抽屜里至少放進(jìn)3本書。
學(xué)生通過“假設(shè)分析法→歸納總結(jié)”的學(xué)習(xí)過程來解決問題(二)。
(1)用假設(shè)法分析。
8÷3=2(本)......2(本),剩下2本,分別放進(jìn)其中2個(gè)抽屜中,使其中2個(gè)抽屜都變成3本,因此把8本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有1個(gè)抽屜里至少放進(jìn)3本書。
10÷3=3(本)......1(本),把10本書放進(jìn)3個(gè)抽屜中,不管怎么放,總有1個(gè)抽屜里至少放進(jìn)4本書。
(2)歸納總結(jié):
綜合上面兩種情況,要把a本書放進(jìn)3個(gè)抽屜里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1個(gè)抽屜里至少放進(jìn)(b+1)本書。
鴿巢原理(二):古國(guó)把多與kn個(gè)的物體任意分別放進(jìn)n個(gè)空抽屜(k是正整數(shù),n是非0的自然數(shù)),那么一定有一個(gè)抽屜中至少放進(jìn)了(k+1)個(gè)物體。
三、鞏固練習(xí)
1、完成教材第70頁的“做一做”第1題。 學(xué)生獨(dú)立思考解答問題,集體交流、糾正。
2、完成教材第71頁練習(xí)十三的1-2題。 學(xué)生獨(dú)立思考解答問題,集體交流、糾正。
四、課堂總結(jié):
通過今天的學(xué)習(xí)你有什么收獲?
你能在生活中找出這樣的例子嗎?
板書設(shè)計(jì):
7÷2=2......1 要把a個(gè)物體放進(jìn)n個(gè)抽屜
8÷3=2......2 如果a÷n=b......c(c不等于0)
10÷3=3......1 那么一定有個(gè)抽屜至少放(b+10)個(gè)物體
課后反思:培養(yǎng)學(xué)生的問題意識(shí),借助直觀操作和假設(shè)法,將問題轉(zhuǎn)化成“有余數(shù)的除法”形式,可以使學(xué)生更好地理解“抽屜原理的一般思路”
聯(lián)系客服