免费视频淫片aa毛片_日韩高清在线亚洲专区vr_日韩大片免费观看视频播放_亚洲欧美国产精品完整版

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
轉(zhuǎn)化與化歸思想

高考預(yù)測

轉(zhuǎn)化與化歸的思想在歷年高考中必然考到,主要可能出現(xiàn)在立體幾何的大題中,將空間立體幾何的問題轉(zhuǎn)化為平面幾何問題,解析幾何大題中求范圍問題的題轉(zhuǎn)化為求函數(shù)值域范圍問題等,總之將復(fù)雜問題轉(zhuǎn)化為簡單問題是高考中解決問題的重要思想方法.

考點1 轉(zhuǎn)化與化歸的思想方法

解決數(shù)學問題時,常遇到一些問題直接求解較為困難,通過觀察、分析、類比、聯(lián)想等思維過程,選擇運用恰當?shù)臄?shù)學方法進行變換,將原問題轉(zhuǎn)化為一個新問題(相對來說,是自己較熟悉的問題),通過新問題的求解,達到解決原問題的目的,這一思想方法我們稱之為轉(zhuǎn)化與化歸的思想方法

考點2 轉(zhuǎn)化與化歸的思想方法應(yīng)用的主要方向

轉(zhuǎn)化與化歸思想的實質(zhì)是揭示聯(lián)系,實現(xiàn)轉(zhuǎn)化.除極簡單的數(shù)學問題外,每個數(shù)學問題的解決都是通過轉(zhuǎn)化為已知的問題實現(xiàn)的.從這個意義上講,解決數(shù)學問題就是從未知向已知轉(zhuǎn)化的過程.轉(zhuǎn)化與化歸思想是解決數(shù)學問題的根本思想,解題的過程實際上就是一步步轉(zhuǎn)化的過程.數(shù)學中的轉(zhuǎn)化比比皆是,如未知向已知轉(zhuǎn)化,復(fù)雜問題向簡單問題轉(zhuǎn)化,新知識向舊知識的轉(zhuǎn)化,命題之間的轉(zhuǎn)化,數(shù)與形的轉(zhuǎn)化,空間向平面的轉(zhuǎn)化,高維向低維的轉(zhuǎn)化,多元向一元的轉(zhuǎn)化,高次向低次的轉(zhuǎn)化,超越式向代數(shù)式的轉(zhuǎn)化,函數(shù)與方程的轉(zhuǎn)化等,都是轉(zhuǎn)化思想的體現(xiàn).

考點3 等價轉(zhuǎn)化和非等價轉(zhuǎn)化

轉(zhuǎn)化有等價轉(zhuǎn)化和非等價轉(zhuǎn)化之分.等價轉(zhuǎn)化前后是充要條件,所以盡可能使轉(zhuǎn)化具有等價性;在不得已的情況下,進行不等價轉(zhuǎn)化,應(yīng)附加限制條件,以保持等價性,或?qū)λ媒Y(jié)論進行必要的驗證.

突破點1 數(shù)列問題化歸為函數(shù)問題解決


規(guī)律方法

把一個原本是求和的問題,轉(zhuǎn)化到各項的逐一比較大小,而一次函數(shù)、指數(shù)函數(shù)的圖象又是學生所熟悉的.在對問題的化歸過程中進一步挖掘了問題的內(nèi)涵,通過對問題的反思、再加工后,使問題直觀、形象,使解答更清新.

突破2 立體幾何問題通過轉(zhuǎn)化得以解決


突破點3 二項式定理應(yīng)用問題通過化歸解決


規(guī)律方法

轉(zhuǎn)化與化歸的意識可以幫我們把未知轉(zhuǎn)化為已知.

突破點4 函數(shù)與不等式中變換主元將二次函數(shù)問題化歸為一次函數(shù)解決


規(guī)律方法

在有幾個變量的問題中,常常有一個變量處于主要地位,我們稱之為主元,由于思維定勢的影響,在解決這類問題時,我們總是緊緊抓住主元不放,這在很多情況下是正確的.但在某些特定條件下,此路往往不通,這時若能變更主元,轉(zhuǎn)變其他變量在問題中的地位,就能使問題迎刃而解.本題中,若視x為主元來處理,既繁且易出錯,將主元進行轉(zhuǎn)化,使問題變成關(guān)于p的一次不等式,問題實現(xiàn)了從高維向低維的轉(zhuǎn)化,解題簡單易行.

小結(jié)反思

1.轉(zhuǎn)化與化歸應(yīng)遵循的基本原則:

(1)熟悉化原則.將陌生的問題轉(zhuǎn)化為熟悉的問題,以利于我們運用熟知的知識、經(jīng)驗和問題來解決.

(2)簡單化原則.將復(fù)雜的問題化歸為簡單問題,通過對簡單問題的解決,達到解決復(fù)雜問題的目的,或獲得某種解題的啟示和依據(jù).

(3)和諧化原則.化歸問題的條件或結(jié)論,使其表現(xiàn)形式更符合數(shù)與形內(nèi)部所表示的和諧的形式,或者轉(zhuǎn)化命題,使其推演有利于運用某種數(shù)學方法或其方法符合人們的思維規(guī)律.

(4)直觀化原則.將比較抽象的問題轉(zhuǎn)化為比較直觀的問題來解決.

(5)正難則反原則.當問題正面討論遇到困難時,可考慮問題的反面,設(shè)法從問題的反面去探求,使問題獲解.

2.熟練、扎實地掌握基礎(chǔ)知識、基本技能和基本方法是轉(zhuǎn)化的基礎(chǔ);豐富的聯(lián)想、機敏細微的觀察、比較、類比是實現(xiàn)轉(zhuǎn)化的橋梁;培養(yǎng)訓(xùn)練自己自覺的轉(zhuǎn)化與化歸意識,需要對定理、公式、法則有本質(zhì)上的深刻理解和對典型習題的總結(jié)和提煉,要積極主動有意識地去發(fā)現(xiàn)事物之間的本質(zhì)聯(lián)系.

抓基礎(chǔ),重轉(zhuǎn)化是學好中學數(shù)學的金鑰匙.

3.為了實施有效的化歸,既可以變更問題的條件,也可以變更問題的結(jié)論;既可以變換問題的內(nèi)部結(jié)構(gòu),也可以變換問題的外部形式;既可以從代數(shù)的角度去認識問題,也可以從幾何的角度去認識問題.

高中數(shù)學幫幫祝你學習快樂?。?!

本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
數(shù)學四大思想方法
數(shù)學思想之轉(zhuǎn)化與劃歸思想概述
高中數(shù)學|思想方法專題|10等價轉(zhuǎn)化思想方法
四種思想方法,讓你輕松掌握高中數(shù)學
高中數(shù)學解題常用思想方法(四)等價轉(zhuǎn)化思想與方法
數(shù)學思想
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服