1主電路的原理
1.1 主電路
其原理圖如圖1所示。
習(xí)慣將其中陰極連接在一起的3個晶閘管(VT1、VT3、VT5)稱為共陰極組;陽極連接在一起的3個晶閘管(VT4、VT6、VT2)稱為共陽極組。此外,習(xí)慣上希望晶閘管按從1至6的順序?qū)?,為此將晶閘管按圖示的順序編號,即共陰極組中與a、b、c三相電源相接的3個晶閘管分別為VT1、VT3、VT5,共陽極組中與a、b、c三相電源相接的3個晶閘管分別為VT4、VT6、VT2。從后面的分析可知,按此編號,晶閘管的導(dǎo)通順序為 VT1-VT2-VT3-VT4-VT5-VT6。
1.2 主電路原理說明
整流電路的負載為帶反電動勢的阻感負載。假設(shè)將電路中的晶閘管換作二極管,這種情況也就相當于晶閘管觸發(fā)角α=0o時的情況。此時,對于共陰極組的3個晶閘管,陽極所接交流電壓值最高的一個導(dǎo)通。而對于共陽極組的3個晶閘管,則是陰極所接交流電壓值最低(或者說負得最多)的一個導(dǎo)通。這樣,任意時刻共陽極組和共陰極組中各有1個晶閘管處于導(dǎo)通狀態(tài),施加于負載上的電壓為某一線電壓。此時電路工作波形如圖2所示。
α=0o時,各晶閘管均在自然換相點處換相。由圖中變壓器二繞組相電壓與線電壓波形的對應(yīng)關(guān)系看出,各自然換相點既是相電壓的交點,同時也是線電壓的交點。在分析ud的波形時,既可從相電壓波形分析,也可以從線電壓波形分析。從相電壓波形看,以變壓器二次側(cè)的中點n為參考點,共陰極組晶閘管導(dǎo)通時,整流輸出電壓 ud1為相電壓在正半周的包絡(luò)線;共陽極組導(dǎo)通時,整流輸出電壓ud2為相電壓在負半周的包絡(luò)線,總的整流輸出電壓ud = ud1-ud2是兩條包絡(luò)線間的差值,將其對應(yīng)到線電壓波形上,即為線電壓在正半周的包絡(luò)線。
直接從線電壓波形看,由于共陰極組中處于通態(tài)的晶閘管對應(yīng)的最大(正得最多)的相電壓,而共陽極組中處于通態(tài)的晶閘管對應(yīng)的是最小(負得最多)的相電壓,輸出整流電壓ud為這兩個相電壓相減,是線電壓中最大的一個,因此輸出整流電壓ud波形為線電壓在正半周的包絡(luò)線。
由于負載端接得有電感且電感的阻值趨于無窮大,電感對電流變化有抗拒作用。流過電感器件的電流變化時,在其兩端產(chǎn)生感應(yīng)電動勢Li,它的極性事阻止電流變化的。當電流增加時,它的極性阻止電流增加,當電流減小時,它的極性反過來阻止電流減小。電感的這種作用使得電流波形變得平直,電感無窮大時趨于一條平直的直線。
為了說明各晶閘管的工作的情況,將波形中的一個周期等分為6段,每段為60o,如圖2所示,每一段中導(dǎo)通的晶閘管及輸出整流電壓的情況如表所示。由該表可見,6個晶閘管的導(dǎo)通順序為VT1-VT2-VT3-VT4-VT5-VT6。
表1三相橋式全控整流電路電阻負載α=0o時晶閘管工作情況
時 段 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
共陰極組中 | VT1 | VT1 | VT3 | VT3 | VT5 | VT5 |
共陽極組中 | VT6 | VT2 | VT2 | VT4 | VT4 | VT6 |
整流輸出電壓ud | ua-ub | ua-uc | ub- uc | ub- ua | uc- ua | uc-ub |
圖3
2 各參數(shù)的計算
2.1 輸出值的計算
2.2 輸出波形的分析
共陽極組中輸出波形原理與共陰極組一樣,只是每個觸發(fā)脈沖比陰極組中脈沖相差180度。6個時段的導(dǎo)通次序如表1所示一樣,只是Wt1從零時刻往后推遲30度而已。這樣就得出最后輸出整流電壓為共陰極組輸出電壓與共陽極組輸出電壓的差即
Ud=Ud1-Ud2
而由于電路中大電感L的作用,輸出的電流為近似平滑的一條直線。圖中同時給出了變壓器二次側(cè)a相電流
3逆變
圖12逆變原理圖