0.引言
1.概述
2.纜索承重橋梁結(jié)構(gòu)體系
3.索塔梁結(jié)構(gòu)靜力計(jì)算理論
4.連接核心受力構(gòu)件精細(xì)化分析與設(shè)計(jì)方法
5.高強(qiáng)索體抗火分析方法
6.認(rèn)識(shí)與展望
參考文獻(xiàn)
[1] 方志, 周建超, 譚星宇. 基于高性能材料的超大跨混合梁斜拉橋結(jié)構(gòu)性能研究[J]. 橋梁建設(shè), 2021, 51(6):76-84.
[2] 袁帥華, 段文強(qiáng), 周聰, 等. 波形鋼腹板部分斜拉橋施工階段剪力滯效應(yīng)分析[J]. 中南大學(xué)學(xué)報(bào):自然科學(xué)版, 2021, 52(11): 4055?4062.
[3] 蔡俊鐿. 淡江大橋主橋設(shè)計(jì)[J]. 世界橋梁, 2021, 51(2):105-110.
[4] 胡可, 王勝斌, 王波,等. 超大跨徑柱式塔斜拉橋結(jié)構(gòu)創(chuàng)新與應(yīng)用[J]. 橋梁建設(shè), 2021, 51(4):8.
[5] 潘子超, 方許銳, 胡曉紅,等. 超高墩對(duì)山區(qū)三塔斜拉橋力學(xué)響應(yīng)的影響[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 48(6):976-802.
[6] 楊鉆, 王雷, 王景奇. 牛田洋大橋主橋結(jié)構(gòu)設(shè)計(jì)[J]. 橋梁建設(shè), 2021, 51(6):1-8.
[7] 祝嘉翀, 黃天立, 周朝陽(yáng), 等. 高鐵大跨拱承式獨(dú)塔斜拉橋成橋狀態(tài)力學(xué)參數(shù)敏感性分析[J]. 鐵道科學(xué)與工程學(xué)報(bào), 2021, 18(9):2244-2254.
[8] 侯滿, 張志強(qiáng), 范振偉. 三亞海棠灣人行景觀斜拉橋總體設(shè)計(jì)[J]. 世界橋梁, 2021, 49(3):1-6.
[9] Kazuhiro Miyachi, Shunichi Nakamura. Cable-Stayed Bridge with S-Curved Girder: Shake Hands Bridge, Structural Engineering International, 2021, 31(4): 504-515.
[10] 鮮榮, 徐源慶, 劉得運(yùn), 等. 黃茅海超大跨三塔斜拉橋結(jié)構(gòu)體系研究[J]. 橋梁建設(shè), 2021, 51(6):9-15.
[11] 熊治華, 張愛(ài)軍, 劉玉擎. 大跨徑槽橋合建結(jié)構(gòu)體系與荷載效應(yīng)研究[J]. 中國(guó)水利水電科學(xué)研究院學(xué)報(bào), 2021, 19(4):389-399.
[12] 孟杰, 陳曉虎, 鄧宇, 等. 重慶土灣大橋主橋方案設(shè)計(jì)[J]. 橋梁建設(shè) 2021, 51(5):101-108.
[13] 柴生波, 張瑞琳, 王秀蘭. 交叉索布置方式對(duì)多塔斜拉橋力學(xué)性能的影響[J]. 科學(xué)技術(shù)與工程, 2021, 21(30):13131-13138.
[14] 王東緒, 霍學(xué)晉, 唐賀強(qiáng),等. 大跨度雙鏈?zhǔn)綉宜鳂蚴芰μ匦杂绊懸蛩匮芯縖J]. 世界橋梁, 2021, 49(1):65-70.
[15] 賀耀北, 邵旭東, 張欣, 等. 鋼-UHPC組合梁自錨式懸索橋力學(xué)性能與經(jīng)濟(jì)性分析[J]. 橋梁建設(shè), 2021, 51(1):51-57.
[16] 袁吉汗. 超大跨徑混合空間纜索懸索橋的力學(xué)性能分析[D]. 南京:東南大學(xué), 2021.
[17] 常付平, 陳亮, 邵長(zhǎng)宇, 等. 濟(jì)南鳳凰黃河大橋主橋設(shè)計(jì)[J]. 橋梁建設(shè), 2021, 51(5):101-107.
[18] Zhuang D, Xiao R, Sun B, et al. Concept and Preliminary Static Analysis of Hybrid Anchored Suspension Bridge[J]. Journal of Bridge Engineering, 2021, 26(6):04021032.
[19] 張?jiān)讫? 王秀蘭, 柴生波. 雙纜多塔懸索橋塔梁受力特性研究[J]. 廣西大學(xué)學(xué)報(bào):自然科學(xué)版, 2021, 46(5):1178-1187.
[20] 王秀蘭, 張?jiān)讫? 柴生波, 等. 雙纜多塔懸索橋主纜垂跨比的合理取值[J]. 公路交通科技, 2021, 38(7):51-59.
[21] 王路, 侯康, 沈銳利, 等. 三塔以上懸索橋關(guān)鍵力學(xué)行為及結(jié)構(gòu)成立特征[J]. 東南大學(xué)學(xué)報(bào):自然科學(xué)版, 2021, 51(3):392-397.
[22] Yunki Son, Changsun Lee, Dongho Yoo, et al. CheonSa Bridge — The First Sea Crossing Multi-Span Suspension Bridge, Structural Engineering International, 2021, 31(3):431-434.
[23] 羅凌峰, 單德山, 陳奉民, 等. 銷(xiāo)接式索夾懸索橋成橋線形的高精度計(jì)算方法[J]. 工程力學(xué), 2021, 38(8):133-144.
[24] Qi D, Chen X, Zhu Y, et al. A New Type of Wind-Resistance Cable Net for Narrow Suspension Bridges and Wind-Resistance Cable Element for Its Calculation[J]. Structures, 2021, 33(1):4243-4255.
[26] Zhou Y, Xia Y, Chen B, et al. Analytical Solution to Temperature-Induced Deformation of Suspension Bridges[J]. Mechanical systems and signal processing, 2020, 139(5):106568.1-106568.17.
[27] Xw A, Hw A, Ji Z B, et al. Form-Finding Method for The Target Configuration Under Dead Load of a New Type of Spatial Self-Anchored Hybrid Cable-Stayed Suspension Bridges[J]. Engineering Structures, 2021, 227(1):111407.
[28] Zhang W M, Yang C Y, Chang J Q, et al. Gravity Stiffness of a Three-Tower Suspension Bridge: Analytical Solution Via Double-Span Bridge Reduction to A Single-Span One with Elastic Constraints[J]. Structures, 2021, 33(10):2198-2207.
[29] Zhang W M, Lu X F, Wang Z, et al. Effect of the main cable bending stiffness on flexural and torsional vibrations of suspension bridges: Analytical approach[J]. Engineering Structures, 2021, 240(6):112393.
[30] Zhang W M, Yang C Y, Chang J Q. Cable Shape and Construction Parameters of Triple-Tower Double-Cable Suspension Bridge with Two Asymmetrical Main Spans[J]. Journal of Bridge Engineering, 2021, 26(2):04020127.
[31] Zhang W M, Liu Z H, Liu Z. Aesthetics and Torsional Rigidity Improvements of a Triple Cable Suspension Bridge by Uniform Distribution of Dead Loads to Three Cables in the Transverse Direction[J]. Journal of Bridge Engineering, 2021, 26(11): 04021083.
[32] Cao H Y, Chen Y P, Li J, et al. Static characteristics analysis of three-tower suspension bridges with central buckle using a simplified model. Engineering Structures, 2021, 245(10):112916.
[33] Gui C, Lei J, Lin W, et al. Static Performance and Elastic Buckling Analysis of Stiffened Plates with Flat Flanges[J]. International Journal of Steel Structures, 2021, 21(5):1588-1604.
[34] Wang F, Lv Z D, Gu M J, et al. Experimental Study on Stability of Orthotropic Steel Box Girder of Self-Anchored Suspension Cable-Stayed Bridge[J]. Thin-Walled Structures, 2021, 163:107727.
[35] Wang F, Tian L J, Lv Z D, et al. Stability of full-scale orthotropic steel plates under axial and biased loading: Experimental and numerical studies[J]. Journal of Constructional Steel Research, 2021, 181(122):106613.
[36] 王飛, 申磊, 趙卓, 等.軸心受壓U形加勁板在彈性約束下的穩(wěn)定承載力計(jì)算分析[J].建筑鋼結(jié)構(gòu)進(jìn)展,2021,23(12):56-64.
[37] Bai L H, Shen R L, Yan Q S, et al. Progressive-models method for evaluating interactive stability of steel box girders for bridges – Extension of progressive collapse method in ship structures[J]. Structures, 2021, 33(10):3848-3861.
[38] 趙秋, 陳鵬, 林楚,等. 受壓T肋被加勁板局部穩(wěn)定試驗(yàn)與計(jì)算方法[J]. 鐵道建筑, 2021, 61(8):23-30.
[39] 趙秋, 陳鵬, 林楚, 等. 受壓T肋加勁板翼緣局部穩(wěn)定試驗(yàn)與計(jì)算方法[J]. 土木與環(huán)境工程學(xué)報(bào)(中英文)
[40] 張雅俊, 林立華, 劉玉擎. Q420鋼U肋加勁板軸壓承載性能試驗(yàn)研究[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021, 49(12):1754-1760.
[41] 劉小林. 連跨懸索橋中間鋼塔雙重非線性極限承載力研究[J]. 交通科技. 2021, 4:21-24.
[42] 孫立軍, 王琦, 張玉奇. 自錨式懸索橋鋼塔塔吊附墻設(shè)計(jì)與局部受力分析[J]. 公路, 2021, 01:171-174.
[43] 易岳林, 陳政, 王雨陽(yáng),等. 超大跨徑組合梁斜拉橋穩(wěn)定和極限承載力研究[J]. 結(jié)構(gòu)工程師, 2021, 37(4):40-47.
[44] 蔡軍, 安永日, 李小斌. 面外彎曲加勁板結(jié)構(gòu)受力特性探究[J]. 中國(guó)公路, 2021, 15:86-89.
[45] Ljubinkovic F, Martins J P, Gervasio H, et al. Experimental behavior of curved bottom flanges in steel box-girder bridge decks[J]. Journal of Constructional Steel Research, 2019, 160(9):169–188.
[46] Staen G V, Fang H, Bogaert P V, et al. Ultimate Shear Load Capacity of Cross-sectional Curved Steel Webs[J]. Structural Engineering International, 2021(8):1-12.
[47] 易倫雄, 袁毅, 彭最. 690MPa級(jí)高性能橋梁鋼工程應(yīng)用[J]. 橋梁建設(shè), 2021, 51(5):14-19.
[48] 黃僑, 黃義理, 鄭清剛, 等.常泰長(zhǎng)江大橋塔柱偏心距增大系數(shù)的計(jì)算方法[J].長(zhǎng)安大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021, 41(3):42-51.
[49] 苑仁安, 傅戰(zhàn)工, 鄭清剛, 等. 超高橋塔結(jié)構(gòu)偏心距增大系數(shù)計(jì)算方法[J]. 橋梁建設(shè), 2021, 51(5):37-43.
[50] Aarne J, Esko J, Tung T Q. Balance and Costs of Cable-Stayed Bridges with Inclined and Curved Tower Shapes[J], Structural Engineering International, 2021, 31(4):498-503.
[51] Lu W, Shen R, Zhang S, et al. Strand element analysis method for interaction between cable and saddle in suspension bridges[J]. Engineering Structures, 2021, 242(4):112283.
[52] 朱輝龍. 大跨度懸索橋主纜力學(xué)行為及滑移特性研究[D]. 徐州:中國(guó)礦業(yè)大學(xué), 2021.
[53] Zhong C J, Shen R L, Wang H, et al. Research on ultimate bearing capacity state and structure optimization of main cable saddle[J]. Structures, 2021, 33:28-40.
[54] 鐘昌均, 王忠彬, 柳晨陽(yáng). 懸索橋主索鞍承載力影響因素及結(jié)構(gòu)優(yōu)化[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版), 2021, 51(6):2068-2078.
[55] 劉斌, 馬健, 劉昆玨, 等. 懸索橋新型復(fù)合索鞍設(shè)計(jì)[J]. 橋梁建設(shè), 2021, 51(2):124-129.
[56] Miao R S, Shen R L, Wang L, et al. Theoretical and numerical studies of the slip resistance of main cable clamp composed of an upper and a lower part[J]. Advances in Structural Engineering, 2021, 24(4):691-705
[57] Miao R S, Shen R L, Tang F L, et al. Nonlinear interaction effect on main cable clamp bolts tightening in suspension bridge[J]. Journal of Constructional Steel Research,2021, 182:106663.
[58] 邱文亮, 吳廣潤(rùn). 懸索橋吊索斷裂動(dòng)力響應(yīng)分析的有限元模擬方法研究[J]. 湖南大學(xué)學(xué)報(bào):自然科學(xué)版, 2021, 48(11):22-30.
[59] 李文武, 周洋, 陳鵬飛,等. 自錨式懸索橋損傷吊索系統(tǒng)拉力重分布研究[J]. 鐵道科學(xué)與工程學(xué)報(bào), 2021, 18(1):145-152.
[60] 王鵬, 唐清華, 閆海青,等. 空間纜索懸索橋吊索斷裂時(shí)的強(qiáng)健性分析[J]. 公路交通科技, 2021, 38(4):71-75.
[61] 張羽, 方志, 盧江波,等. 大跨混凝土斜拉橋施工過(guò)程中結(jié)構(gòu)的斷索動(dòng)力響應(yīng)[J]. 振動(dòng)與沖擊, 2021, 40(5):237-246.
[62] Jumari R, Adrian B, Raimondo B. Experimental Investigation of the High-Temperature Performance of High-Strength Steel Suspension Bridge Wire[J]. Journal of Bridge Engineering, 2021, 26(7):04021034.
[63] Chen W, Shen R. Study of Temperature Field Inhomogeneities in Parallel Wire Strand Sections under ISO834 Fire[J]. KSCE Journal of Civil Engineering, 2021, 25(10):3940-3952.
[64] Zhi Liu, Julio Cesar G. Silva, Qiao Huang et al. Coupled CFD–FEM Simulation Methodology for Fire-Exposed Bridges[J]. Journal of Bridge Engineering, 2021, 26(10): 04021074.
聯(lián)系客服
微信登錄中...
請(qǐng)勿關(guān)閉此頁(yè)面