免费视频淫片aa毛片_日韩高清在线亚洲专区vr_日韩大片免费观看视频播放_亚洲欧美国产精品完整版

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
AGC052 B - Tree Edges XOR Editorial

題目:B - Tree Edges XOR

題目描述:
給你一棵\(n\)個點、\(n-1\)條邊的樹,樹上每條邊的邊權(quán)\(w_{i}^{1}\)和期望邊權(quán)\(w_{i}^{2}\)均已知(\(w_{i}^{2}\)不是\(w_{i}^{1}\)平方的意思),你可以進行以下操作

  • 選擇一條邊\((a,b)\),記這條邊現(xiàn)在的權(quán)值為\(w\),那么與這條邊相鄰的所有邊,即所有的\((a,x)\)\((b,y)\)(邊\((a,b)\)不算)的邊權(quán)值都會異或上\(w\)

你可以進行任意次數(shù)操作,問是否存在合法的操作使得所有的邊權(quán)\(w_{i}^{1}\)都變?yōu)樗鼘?yīng)的期望邊權(quán)\(w_{i}^{2}\)

\(n \leq 10^{5}\)\(n\) 為奇數(shù), \(0 \leq w_{i}^{1},w_{i}^{2} < 2^{30}\)

蒟蒻題解
我真的是太菜了,一場比賽就打了一個第一題,第二題就不會了

定義\(d_{u,v}\)表示\(u\)\(v\)的簡單路徑上所有邊的權(quán)值的異或和(這個想法是我之前沒怎么接觸到的),\(f_{u,v}\)表示\(u\)\(v\)的簡單路徑上所有邊的期望權(quán)值的異或和

當對邊\((a,b)\)進行操作時

  • \(u \neq a\)\(u \neq b\),則\(d_{u,a}\)的值和\(d_{u,b}\)的值會進行交換
  • \(u = a\)\(u = b\),假設(shè)\(u = a\),記\((u,b)\)這條邊的權(quán)值為\(w\),則對于任意點\(v\),\(d_{u,v}\)都會異或上\(w\)

假設(shè)對以點\(u\)為端點的所有邊的操作異或起來記為\(W\),那么如果答案有解,那么對于任意點\(a\),一定存在\(d_{u,a} \bigoplus W = f_{u,b}\),且\(a\)\(b\)兩兩配對

如果存在滿足條件的\(W\),由于\(n\)是奇數(shù),所有易得\(W = d_{u,1} \bigoplus d_{u,2} \bigoplus ··· \bigoplus d_{u,n} \bigoplus f_{u,1} \bigoplus f_{u,2} \bigoplus ··· \bigoplus f_{u,n}\)

那么題目可以轉(zhuǎn)換為:是否存在合法操作,使得對于任意點\(u\),以\(u\)為端點的邊的操作異或能構(gòu)成\(W\),且\(d_{u,a} \bigoplus W\)\(f_{u,b}\)兩兩對應(yīng)相等

假設(shè)對于一個點\(u\),想要判斷是否存在操作能來構(gòu)成\(W\)不太好做,我們可以先看看后面的要求:要滿足\(d_{u,a} \bigoplus W\)\(f_{u,b}\)兩兩對應(yīng)相等

由于我們已知\(W = d_{u,1} \bigoplus d_{u,2} \bigoplus ··· \bigoplus d_{u,n} \bigoplus f_{u,1} \bigoplus f_{u,2} \bigoplus ··· \bigoplus f_{u,n}\),那么\(d_{u,a} \bigoplus W = f_{u,b}\)就相當于\(d_{u,a} \bigoplus W \bigoplus f_{u,b} = 0\),即將構(gòu)成\(W\)的一系列異或值去掉\(d_{u,a}\)\(f_{u,b}\),其他值異或起來為\(0\),也就是說\(d_{u,1} \bigoplus d_{u,2} \bigoplus ··· \bigoplus d_{u,a-1} \bigoplus d_{u,a+1} \bigoplus ··· \bigoplus d_{u,n} = f_{u,1} \bigoplus f_{u,2} \bigoplus ··· \bigoplus f_{u,b-1} \bigoplus f_{u,b+1} \bigoplus ··· \bigoplus f_{u,n}\),也就是說,我們能用若干\(d_{u,x}\)去表示\(f_{u,y}\),原本構(gòu)成\(W\)需要\(d\)\(f\),可以全部轉(zhuǎn)換成\(d\)的形式,所以如果滿足\(d_{u,a} \bigoplus W\)\(f_{u,b}\)兩兩對應(yīng)相等,那么\(W\)也能被構(gòu)建出來

但是一共有\(n\)個點,每個點都去判斷一次,單次判斷復(fù)雜度是\(O(nlog\ n)\),總的復(fù)雜度是\(O(n^{2}log\ n)\)

不妨去試一下,一個點成立,能否推廣到其他點也成立

\(u\)滿足條件,那么假設(shè)\(v\)\(u\)有連邊,這條邊的初始權(quán)值為\(w ^ {1}\),期望權(quán)值為\(w ^{2}\),那么\(d_{v,a} = d_{u,a} \bigoplus w ^ {1}\),\(f_{v,a} = f_{u,a} \bigoplus w ^ {2}\)\(W_{v} = W_{u} \bigoplus w ^ {1} \bigoplus w ^ {2}\),假設(shè)原本存在\(d_{u,a} \bigoplus W_{u} = f_{u,b}\),那么現(xiàn)在\(d_{v,a} \bigoplus W_{v} = f_{v,b}\)也同樣成立

總結(jié):對于節(jié)點\(u\),判斷是否存在\(d_{u,a} \bigoplus W\)\(f_{u,b}\)兩兩對應(yīng)相等,時間復(fù)雜度是\(O(nlog\ n)\)

參考程序:

#include<bits/stdc++.h>
using namespace std;
#define Re register int

const int N = 100005;
int n, cnt, s, val1[N], val2[N], hea[N], nxt[N << 1], to[N << 1], wi1[N << 1], wi2[N << 1];

inline int read()
{
	char c = getchar();
	int ans = 0;
	while (c < 48 || c > 57) c = getchar();
	while (c >= 48 && c <= 57) ans = (ans << 3) + (ans << 1) + (c ^ 48), c = getchar();
	return ans;
}

inline void add(int x, int y, int z1, int z2)
{
	nxt[++cnt] = hea[x], to[cnt] = y, wi1[cnt] = z1, wi2[cnt] = z2, hea[x] = cnt;
}

inline void dfs(int x, int y)
{
	for (Re i = hea[x]; i; i = nxt[i])
	{
		int u = to[i];
		if (u == y) continue;
		val1[u] = val1[x] ^ wi1[i], val2[u] = val2[x] ^ wi2[i];
		dfs(u, x);
	}
}

int main()
{
	n = read();
	for (Re i = 1; i < n; ++i)
	{
		int u = read(), v = read(), w1 = read(), w2 = read();
		add(u, v, w1, w2), add(v, u, w1, w2);
	}
	dfs(1, 0);
	for (Re i = 1; i <= n; ++i) s ^= val1[i] ^ val2[i];
	for (Re i = 1; i <= n; ++i) val1[i] ^= s;
	sort(val1 + 1, val1 + n + 1), sort(val2 + 1, val2 + n + 1);
	for (Re i = 1; i <= n; ++i)
		if (val1[i] ^ val2[i])
		{
			puts("NO");
			return 0;
		}
	puts("YES");
	return 0;
}
本站僅提供存儲服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請點擊舉報。
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
運輸計劃[二分答案 LCA 樹上差分]
清北學(xué)堂NOIP訓(xùn)練營內(nèi)部試題!
不使用+或-運算符,計算兩數(shù)之和
D. Edge Weight Assignment(貪心、葉子節(jié)點深度計算、兄弟葉子節(jié)點計數(shù))
USACO/dualpal
Bp神經(jīng)網(wǎng)絡(luò)+C++實現(xiàn)
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長圖 關(guān)注 下載文章
綁定賬號成功
后續(xù)可登錄賬號暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點擊這里聯(lián)系客服!

聯(lián)系客服