Alice and Bob take turns playing a game, with Alice starting first.
Initially, there are n
stones in a pile. On each player's turn, that player makes a move consisting of removing any non-zero square number of stones in the pile.
Also, if a player cannot make a move, he/she loses the game.
Given a positive integer n
. Return True
if and only if Alice wins the game otherwise return False
, assuming both players play optimally.
Example 1:
Input: n = 1
Output: true
Explanation: Alice can remove 1 stone winning the game because Bob doesn't have any moves.
Example 2:
Input: n = 2
Output: false
Explanation: Alice can only remove 1 stone, after that Bob removes the last one winning the game (2 -> 1 -> 0).
Example 3:
Input: n = 4
Output: true
Explanation: n is already a perfect square, Alice can win with one move, removing 4 stones (4 -> 0).
Example 4:
Input: n = 7
Output: false
Explanation: Alice can't win the game if Bob plays optimally.
If Alice starts removing 4 stones, Bob will remove 1 stone then Alice should remove only 1 stone and finally Bob removes the last one (7 -> 3 -> 2 -> 1 -> 0).
If Alice starts removing 1 stone, Bob will remove 4 stones then Alice only can remove 1 stone and finally Bob removes the last one (7 -> 6 -> 2 -> 1 -> 0).
Example 5:
Input: n = 17
Output: false
Explanation: Alice can't win the game if Bob plays optimally.
Constraints:
1 <= n <= 10^5
兩人輪流取數(shù),每次只能取走一個(gè)平方數(shù),當(dāng)前回合無(wú)法取出平方數(shù)的人算輸。在都采取最優(yōu)策略的前提下,判斷先取的人是否一定贏。
假設(shè)f(n)=true表示總數(shù)為n時(shí)先取的人能贏。若取走的平方數(shù)為k,很明顯只要f(n-k)為false(第二個(gè)取的人會(huì)輸),第一個(gè)取的人就能贏。兩種實(shí)現(xiàn)方式:記憶化搜索和動(dòng)態(tài)規(guī)劃。
class Solution {
public boolean winnerSquareGame(int n) {
Map<Integer, Boolean> record = new HashMap<>();
return dfs(n, record);
}
private boolean dfs(int n, Map<Integer, Boolean> record) {
if (n == 0) {
return false;
}
if (record.containsKey(n)) {
return record.get(n);
}
for (int i = 1; i*i <= n;i++) {
if (!dfs(n - i * i, record)) {
record.put(n, true);
return true;
}
}
record.put(n, false);
return false;
}
}
class Solution {
public boolean winnerSquareGame(int n) {
boolean[] dp = new boolean[n + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j * j <= i; j++) {
if (!dp[i - j * j]) {
dp[i] = true;
break;
}
}
}
return dp[n];
}
}
聯(lián)系客服