導(dǎo)語(yǔ)
動(dòng)物集體運(yùn)動(dòng)中涌現(xiàn)的集體智能現(xiàn)象,在不同物種中普遍存在,是復(fù)雜系統(tǒng)科學(xué)研究的重要課題。從集體行為中推斷區(qū)分群體中的領(lǐng)導(dǎo)者和追隨者,進(jìn)而理解集體行為中領(lǐng)導(dǎo)-追隨模式的形成和發(fā)展,對(duì)于理解人類社會(huì)的復(fù)雜集體行為、優(yōu)化集群機(jī)器人行為邏輯、設(shè)計(jì)大規(guī)模分布式人機(jī)互動(dòng)決策的算法,具有啟發(fā)意義。來(lái)自圣塔菲研究所、華盛頓大學(xué)、克拉克森大學(xué)的合作團(tuán)隊(duì),提出了一個(gè)數(shù)學(xué)分析框架,從多維度、多類型、廣譜的角度剖析了集體行為中的領(lǐng)導(dǎo)力(leadership)。
關(guān)鍵詞:集體運(yùn)動(dòng),集體智能,涌現(xiàn)
Joshua Garland, Andrew M. Berdahl, Jie Sun, Erik M. Bollt | 作者
劉培源、劉志航 | 譯者
鄧一雪 | 編輯
論文題目:
Anatomy of leadership in collective behaviour
論文鏈接: https://aip.scitation.org/doi/full/10.1063/1.5024395
摘要
1. 概述
2. 一般數(shù)學(xué)框架
3. 領(lǐng)導(dǎo)力的主要組成部分
4. 驗(yàn)證領(lǐng)導(dǎo)力推斷方法的模型沙盒
5. 后記
摘要
1. 概述
2. 一般數(shù)學(xué)框架
3. 領(lǐng)導(dǎo)力的主要組成部分
A. 領(lǐng)導(dǎo)力的來(lái)源
圖1. 鴿群中的等級(jí)領(lǐng)導(dǎo)。根據(jù)Nagy等人的定義,定向邊從有影響力的個(gè)體指向他們所影響的個(gè)體[19 ],例如,傾向于領(lǐng)導(dǎo) ,而沒(méi)有領(lǐng)導(dǎo)任何人。
B. 領(lǐng)導(dǎo)力的特點(diǎn)
圖2. 個(gè)體領(lǐng)導(dǎo)力的覆蓋范圍。每個(gè)帶紅圈的節(jié)點(diǎn)都在可達(dá)性集合內(nèi),因此也是個(gè)體的可及范圍。
C. 現(xiàn)實(shí)世界的動(dòng)物行為和領(lǐng)導(dǎo)力的剖析
4. 驗(yàn)證領(lǐng)導(dǎo)力推斷方法的模型沙盒
A. 基本的集體運(yùn)動(dòng)模型
圖3. 帶狀蜂群模型示意圖。黑色的三角形是焦點(diǎn)個(gè)體。紅色的環(huán)標(biāo)志著排斥區(qū)R。藍(lán)色圓圈是定向區(qū)O,焦點(diǎn)個(gè)體試圖與這個(gè)區(qū)域的個(gè)體(圖中的藍(lán)色三角形)對(duì)齊。外圈是吸引區(qū)A,焦點(diǎn)個(gè)體試圖靠近這些個(gè)體(圖中的綠色三角形)。然后,產(chǎn)生的期望方向是綠色和藍(lán)色矢量的總和。
B. 明確增加領(lǐng)導(dǎo)力的來(lái)源
C. 測(cè)試領(lǐng)導(dǎo)力的特征
D.一個(gè)潛在的陷阱:影響力vs.領(lǐng)導(dǎo)力
5. 后記
參考文獻(xiàn)
1. T. Vicsek and A. Zafeiris, “Collective motion,” Phys. Rep. 517, 71–140 (2012). https://doi.org/10.1016/j.physrep.2012.03.004,
2. P. A. Westley, A. M. Berdahl, C. J. Torney, and D. Biro, Collective movement in ecology: From emerging technologies to conservation and management,” Phil. Trans. R. Soc. B 373, 20170004 (2018). https://doi.org/10.1098/rstb.2017.0004,
3. P. W. Anderson, “More is different,” Science 177, 393–396 (1972). https://doi.org/10.1126/science.177.4047.393,
4. L. Conradt and T. J. Roper, “Consensus decision making in animals,” Trends. Ecol. Evol. (Amst.) 20, 449–456 (2005). https://doi.org/10.1016/j.tree.2005.05.008,
5. A. M. Berdahl, A. B. Kao, A. Flack, P. A. Westley, E. A. Codling, I. D. Couzin, A. I. Dell, and D. Biro, “Collective animal navigation and migratory culture: From theoretical models to empirical evidence,” Philos. Trans. R. Soc. B 373, 20170009 (2018). https://doi.org/10.1098/rstb.2017.0009,
6. B. Helm, T. Piersma, and H. Van der Jeugd, “Sociable schedules: Interplay between avian seasonal and social behaviour,” Anim. Behav. 72, 245–262 (2006). https://doi.org/10.1016/j.anbehav.2005.12.007,
7. A. Berdahl, P. A. Westley, and T. P. Quinn, “Social interactions shape the timing of spawning migrations in an anadromous fish,” Anim. Behav. 126, 221–229 (2017). https://doi.org/10.1016/j.anbehav.2017.01.020,
8. L. Conradt and T. J. Roper, “Group decision-making in animals,” Nature 421, 155 (2003). https://doi.org/10.1038/nature01294,
9. I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin, “Effective leadership and decision-making in animal groups on the move,” Nature 433, 513–516 (2005). https://doi.org/10.1038/nature03236,
10. M. d. M. Delgado, M. Miranda, S. J. Alvarez, E. Gurarie, W. F. Fagan, V. Penteriani, A. di Virgilio, and J. M. Morales, “The importance of individual variation in the dynamics of animal collective movements,” Philos. Trans. R. Soc. B 373, 20170008 (2018). https://doi.org/10.1098/rstb.2017.0008,
11. L. F. Hughey, A. M. Hein, A. Strandburg-Peshkin, and F. H. Jensen, “Challenges and solutions for studying collective animal behaviour in the wild,” Philos. Trans. R. Soc. B 373, 20170005 (2018). https://doi.org/10.1098/rstb.2017.0005,
12. A. Strandburg-Peshkin, D. Papageorgiou, M. C. Crofoot, and D. R. Farine, “Inferring influence and leadership in moving animal groups,” Philos. Trans. R. Soc. B 373, 20170006 (2018). https://doi.org/10.1098/rstb.2017.0006,
13. J. E. Smith, S. Gavrilets, M. B. Mulder, P. L. Hooper, C. El Mouden, D. Nettle, C. Hauert, K. Hill, S. Perry, A. E. Pusey, M. van Vugt, and E. A. Smith, “Leadership in mammalian societies: Emergence, distribution, power, and payoff,” Trends Ecol. Evol. (Amst.) 31, 54–66 (2016). https://doi.org/10.1016/j.tree.2015.09.013,
14. J. S. Lewis, D. Wartzok, and M. R. Heithaus, “Highly dynamic fission–fusion species can exhibit leadership when traveling,” Behav. Ecol. Sociobiol. 65, 1061–1069 (2011). https://doi.org/10.1007/s00265-010-1113-y,
15. L. J. Brent, D. W. Franks, E. A. Foster, K. C. Balcomb, M. A. Cant, and D. P. Croft, “Ecological knowledge, leadership, and the evolution of menopause in killer whales,” Curr. Biol. 25, 746–750 (2015). https://doi.org/10.1016/j.cub.2015.01.037,
16. D. M. Jacoby, Y. P. Papastamatiou, and R. Freeman, “Inferring animal social networks and leadership: Applications for passive monitoring arrays,” J. R. Soc. Interface 13, 20160676 (2016). https://doi.org/10.1098/rsif.2016.0676,
17. A. Strandburg-Peshkin, D. R. Farine, I. D. Couzin, and M. C. Crofoot, “Shared decision-making drives collective movement in wild baboons,” Science 348, 1358–1361 (2015). https://doi.org/10.1126/science.aaa5099,
18. J.-B. Leca, N. Gunst, B. Thierry, and O. Petit, “Distributed leadership in semifree-ranging white-faced capuchin monkeys,” Anim. Behav. 66, 1045–1052 (2003). https://doi.org/10.1006/anbe.2003.2276,
19. M. Nagy, Z. Akos, D. Biro, and T. Vicsek, “Hierarchical group dynamics in pigeon flocks,” Nature 464, 890–893 (2010). https://doi.org/10.1038/nature08891,
20. Z. ákos, R. Beck, M. Nagy, T. Vicsek, and E. Kubinyi, “Leadership and path characteristics during walks are linked to dominance order and individual traits in dogs,” PLoS Comput. Biol. 10, e1003446 (2014). https://doi.org/10.1371/journal.pcbi.1003446,
21. L. Jiang, L. Giuggioli, A. Perna, R. Escobedo, V. Lecheval, C. Sire, Z. Han, and G. Theraulaz, “Identifying influential neighbors in animal flocking,” PLoS Comput. Biol. 13, e1005902 (2017). https://doi.org/10.1371/journal.pcbi.1005822,
22. I. Watts, M. Nagy, R. I. Holbrook, D. Biro, and T. B. de Perera, “Validating two-dimensional leadership models on three-dimensionally structured fish schools,” R. Soc. Open. Sci. 4, 160804 (2017). https://doi.org/10.1098/rsos.160804,
23. H. Ye, E. R. Deyle, L. J. Gilarranz, and G. Sugihara, “Distinguishing time-delayed causal interactions using convergent cross mapping,” Sci. Rep. 5 (2015). https://doi.org/10.1038/srep14750,
24. W. M. Lord, J. Sun, N. T. Ouellette, and E. M. Bollt, “Inference of causal information flow in collective animal behavior,” IEEE Trans. Mol. Biol. Multi-Scale Commun. 2, 107–116 (2016). https://doi.org/10.1109/TMBMC.2016.2632099,
25. S. Butail, V. Mwaffo, and M. Porfiri, “Model-free information-theoretic approach to infer leadership in pairs of zebrafish,” Phys. Rev. E 93, 042411 (2016). https://doi.org/10.1103/PhysRevE.93.042411,
26. J. Sun, D. Taylor, and E. M. Bollt, “Causal network inference by optimal causation entropy,” SIAM. J. Appl. Dyn. Syst. 14, 73–106 (2015). https://doi.org/10.1137/140956166,
27. N. Thorpe, N. Hakongak, S. Eyegetok, and the Kitikmeot Elders, Thunder on the Tundra: Inuit Qaujimajatuqangit of the Bathurst Caribou (Generation Printing, Vancouver, 2001).
28. P. S. Barboza and K. L. Parker, “Allocating protein to reproduction in arctic reindeer and caribou,” Physiol. Biochem. Zool. 81, 835–855 (2008). https://doi.org/10.1086/590414,
29. L. Conradt, J. Krause, I. D. Couzin, and T. J. Roper, “Leading according to need in self-organizing groups,” Am. Nat. 173, 304–312 (2009). https://doi.org/10.1086/596532,
30. C. J. Torney, M. Lamont, L. Debell, R. J. Angohiatok, L.-M. Leclerc, and A. M. Berdahl, “Inferring the rules of social interaction in migrating caribou,” Philos. Trans. R. Soc. B 373, 20170385 (2018). https://doi.org/10.1098/rstb.2017.0385,
31. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Phys. Rev. Lett. 75, 1226 (1995). https://doi.org/10.1103/PhysRevLett.75.1226,
32. E. M. Bollt and N. Santitissadeekorn, Applied and Computational Measurable Dynamics (SIAM, 2013).
33. R. G. James, N. Barnett, and J. P. Crutchfield, “Information flows? A critique of transfer entropies,” Phys. Rev. Lett. 116, 238701 (2016). https://doi.org/10.1103/PhysRevLett.116.238701,
34. J. C. Flack and D. C. Krakauer, “Encoding power in communication networks,” Am. Nat. 168, E87–E102 (2006). https://doi.org/10.1086/506526,
35. E. R. Brush, D. C. Krakauer, and J. C. Flack, “A family of algorithms for computing consensus about node state from network data,” PLoS Comput. Biol. 9, e1003109 (2013). https://doi.org/10.1371/journal.pcbi.1003109,
36. C. De Bacco, D. B. Larremore, and C. Moore, “A physical model for efficient ranking in networks,” arXiv preprint arXiv:1709.09002 (2017).
37. A. Strandburg-Peshkin, C. R. Twomey, N. W. Bode, A. B. Kao, Y. Katz, C. C. Ioannou, S. B. Rosenthal, C. J. Torney, H. S. Wu, S. A. Levin, and I. Couzin, “Visual sensory networks and effective information transfer in animal groups,” Curr. Biol. 23, R709–R711 (2013). https://doi.org/10.1016/j.cub.2013.07.059,
38. S. G. Reebs, “Can a minority of informed leaders determine the foraging movements of a fish shoal?” Anim. Behav. 59, 403–409 (2000). https://doi.org/10.1006/anbe.1999.1314,
39. T. Mueller, R. B. O’Hara, S. J. Converse, R. P. Urbanek, and W. F. Fagan, “Social learning of migratory performance,” Science 341, 999–1002 (2013). https://doi.org/10.1126/science.1237139,
40. K. M. Schultz, K. M. Passino, and T. D. Seeley, “The mechanism of flight guidance in honeybee swarms: Subtle guides or streaker bees?” J. Exp. Biol. 211, 3287–3295 (2008). https://doi.org/10.1242/jeb.018994,
41. C. J. Torney, A. Berdahl, and I. D. Couzin, “Signalling and the evolution of cooperative foraging in dynamic environments,” PLoS Comput. Biol. 7, e1002194 (2011). https://doi.org/10.1371/journal.pcbi.1002194,
42. B. Pettit, Z. ákos, T. Vicsek, and D. Biro, “Speed determines leadership and leadership determines learning during pigeon flocking,” Curr. Biol. 25, 3132–3137 (2015). https://doi.org/10.1016/j.cub.2015.10.044,
43. K. J. Stewart and A. H. Harcourt, “Gorillas’ vocalizations during rest periods: Signals of impending departure? ”Behaviour 130, 29–40 (1994). https://doi.org/10.1163/156853994X00127,
44. D. Fossey, “Vocalizations of the mountain gorilla (Gorilla gorilla beringei),” Anim. Behav. 20, 36–53 (1972). https://doi.org/10.1016/S0003-3472(72)80171-4,
45. J. M. Smith and D. Harper, Animal Signals (Oxford University Press, 2003).
46. J. M. Black, “Preflight signalling in swans: A mechanism for group cohesion and flock formation,” Ethology 79, 143–157 (1988). https://doi.org/10.1111/j.1439-0310.1988.tb00707.x,
47. A. J. King, C. M. Douglas, E. Huchard, N. J. Isaac, and G. Cowlishaw, “Dominance and affiliation mediate despotism in a social primate,” Curr. Biol. 18, 1833–1838 (2008). https://doi.org/10.1016/j.cub.2008.10.048,
48. K. Payne, Sources of Social Complexity in the Three Elephant Species (Harvard University Press, 2003).
49. R. O. Peterson, A. K. Jacobs, T. D. Drummer, L. D. Mech, and D. W. Smith, “Leadership behavior in relation to dominance and reproductive status in gray wolves, canis lupus,” Can. J. Zool. 80, 1405–1412 (2002). https://doi.org/10.1139/z02-124,
50. D. Lusseau and L. Conradt, “The emergence of unshared consensus decisions in bottlenose dolphins,” Behav. Ecol. Sociobiol. 63, 1067–1077 (2009). https://doi.org/10.1007/s00265-009-0740-7,
51. J. C. Flack, M. Girvan, F. B. De Waal, and D. C. Krakauer, “Policing stabilizes construction of social niches in primates,” Nature 439, 426 (2006). https://doi.org/10.1038/nature04326,
52. S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D. Couzin, “Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion,” Proc. Natl. Acad. Sci. 112, 4690–4695 (2015). https://doi.org/10.1073/pnas.1420068112,
53. K. N. Laland and K. Williams, “Shoaling generates social learning of foraging information in guppies,” Anim. Behav. 53, 1161–1169 (1997). https://doi.org/10.1006/anbe.1996.0318,
54. A. Flack, B. Pettit, R. Freeman, T. Guilford, and D. Biro, “What are leaders made of? The role of individual experience in determining leader–follower relations in homing pigeons,” Anim. Behav. 83, 703–709 (2012). https://doi.org/10.1016/j.anbehav.2011.12.018,
55. M. Nagy, I. D. Couzin, W. Fiedler, M. Wikelski, and A. Flack, “Synchronization, coordination and collective sensing during thermalling flight of freely migrating white storks,” Philos. Trans. R. Soc. B 373, 20170011 (2018). https://doi.org/10.1098/rstb.2017.0011,
56. A. Berdahl, C. J. Torney, C. C. Ioannou, J. J. Faria, and I. D. Couzin, “Emergent sensing of complex environments by mobile animal groups,” Science 339, 574–576 (2013). https://doi.org/10.1126/science.1225883,
57. C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in ACM SIGGRAPH Computer Graphics (ACM, 1987), 21, pp. 25–34.
58. I. D. Couzin, J. Krause, R. James, G. D. Ruxton, and N. R. Franks, “Collective memory and spatial sorting in animal groups,” J. Theor. Biol. 218, 1–11 (2002). https://doi.org/10.1006/jtbi.2002.3065,
59. N. W. Bode, A. J. Wood, and D. W. Franks, “The impact of social networks on animal collective motion,” Anim. Behav. 82, 29–38 (2011). https://doi.org/10.1016/j.anbehav.2011.04.011,
60. C. R. Brown, M. B. Brown, and M. L. Shaffer, “Food-sharing signals among socially foraging cliff swallows,” Anim. Behav. 42, 551–564 (1991). https://doi.org/10.1016/S0003-3472(05)80239-8,
61. T. Schreiber, “Measuring information transfer,” Phys. Rev. Lett. 85, 461–4 (2000). https://doi.org/10.1103/PhysRevLett.85.461,
62. D. Darmon, E. Omodei, and J. Garland, “Followers are not enough: A multifaceted approach to community detection in online social networks,” PLoS ONE 10, e0134860 (2015). https://doi.org/10.1371/journal.pone.0134860,
63. E. M. Bollt, “Synchronization as a process of sharing and transferring information,” Int. J. Bifurcat. Chaos 22, 1250261 (2012). https://doi.org/10.1142/S0218127412502616,
64. J. Sun and E. M. Bollt, “Causation entropy identifies indirect influences, dominance of neighbors and anticipatory couplings,” Phys. D: Nonlin. Phenom. 267, 49–57 (2014). https://doi.org/10.1016/j.physd.2013.07.001,
65. C. Cafaro, W. M. Lord, J. Sun, and E. M. Bollt, “Causation entropy from symbolic representations of dynamical systems,” Chaos: Interdiscip. J. Nonlin. Sci. 25, 043106 (2015). https://doi.org/10.1063/1.4916902, Scitation, ISI
66. C. W. Granger, “Testing for causality: A personal viewpoint,” J. Econ. Dyn. Control 2, 329–352 (1980). https://doi.org/10.1016/0165-1889(80)90069-X,
67. J. Sun, C. Cafaro, and E. M. Bollt, “Identifying the coupling structure in complex systems through the optimal causation entropy principle,” Entropy 16, 3416–3433 (2014). https://doi.org/10.3390/e16063416,
68. B. Russell, Mysticism and Logic (New Statesman, 1913).
69. B. Russell, Human Knowledge: Its Scope and Its Limits (Simon & Schuster, New York, 1948).
70. J. Bigelow and R. Pargetter, “Metaphysics of causation,” Erkenntnis 33, 89–119 (1990). https://doi.org/10.1007/BF00634553,
71. J. Pearl and T. S. Verma, “A theory of inferred causation,” in Studies in Logic and the Foundations of Mathematics (Elsevier, 1995), Vol. 134, pp. 789–811.
72. J. Pearl, “Bayesian networks” (2011), available at https://escholarship.org/uc/item/53n4f34m.
73. J. Pearl, “The structural theory of causation,” in Causality in the Sciences (Clarendon Press, Oxford, 2011), pp. 697–727.
74. B. Skyrms and W. L. Harper, Causation, Chance and Credence: Proceedings of the Irvine Conference on Probability and Causation (Springer Science & Business Media, 2012), Vol. 1.
75. D. A. Freedman, “Linear statistical models for causation: A critical review,” Encyclopedia Stat. Behav. Sci. (2005). https://doi.org/10.1002/0470013192.bsa598,
76. L. Barnett, A. B. Barrett, and A. K. Seth, “Granger causality and transfer entropy are equivalent for gaussian variables,” Phys. Rev. Lett. 103, 238701 (2009). https://doi.org/10.1103/PhysRevLett.103.238701,
(參考文獻(xiàn)可上下滑動(dòng)查看)
復(fù)雜科學(xué)最新論文
聯(lián)系客服