相關(guān)概念三角函數(shù)的標(biāo)準(zhǔn)英文讀音音標(biāo)
余弦:cosine(簡(jiǎn)寫(xiě)cos)[k?usain]
余矢:versed cosine(簡(jiǎn)寫(xiě)vercos)['v?:s?:d][k?usain] 直角三角函數(shù) 直角三角函數(shù) (∠α是銳角) 三角關(guān)系 倒數(shù)關(guān)系: 商的關(guān)系: 平方關(guān)系:
三角函數(shù)看似很多,很復(fù)雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律就會(huì)發(fā)現(xiàn)三角函數(shù)各個(gè)公式之間有強(qiáng)大的聯(lián)系。而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學(xué)好三角函數(shù)的關(guān)鍵所在。
三角函數(shù)本質(zhì):
根據(jù)三角函數(shù)定義推導(dǎo)公式根據(jù)右圖,有
sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y
深刻理解了這一點(diǎn),下面所有的三角公式都可以從這里出發(fā)推導(dǎo)出來(lái),比如以推導(dǎo)
sin(A+B) = sinAcosB+cosAsinB 為例:
推導(dǎo):
首先畫(huà)單位圓交X軸于C,D,在單位圓上有任意A,B點(diǎn)。角AOD為α,BOD為β,旋轉(zhuǎn)AOB使OB與OD重合,形成新A'OD。
A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))
OA'=OA=OB=OD=1,D(1,0)
∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2
和差化積及積化和差用還原法結(jié)合上面公式可推出(換(a+b)/2與(a-b)/2)
單位圓定義
單位圓
六個(gè)三角函數(shù)也可以依據(jù)半徑為一中心為原點(diǎn)的單位圓來(lái)定義。單位圓定義在實(shí)際計(jì)算上沒(méi)有大的價(jià)值;實(shí)際上對(duì)多數(shù)角它都依賴(lài)于直角三角形。但是單位圓定義的確允許三角函數(shù)對(duì)所有正數(shù)和負(fù)數(shù)輻角都有定義,而不只是對(duì)于在 0 和 π/2弧度之間的角。它也提供了一個(gè)圖象,把所有重要的三角函數(shù)都包含了。根據(jù)勾股定理,單位圓的等式是:x^2+y^2=1
圖象中給出了用弧度度量的一些常見(jiàn)的角。逆時(shí)針?lè)较虻亩攘渴钦?,而順時(shí)針的度量是負(fù)角。設(shè)一個(gè)過(guò)原點(diǎn)的線(xiàn),同x軸正半部分得到一個(gè)角θ,并與單位圓相交。這個(gè)交點(diǎn)的x和y坐標(biāo)分別等于 cosθ和 sinθ。圖象中的三角形確保了這個(gè)公式;半徑等于斜邊且長(zhǎng)度為1,所以有 sinθ=y/1 和 cosθ=x/1。單位圓可以被視為是通過(guò)改變鄰邊和對(duì)邊的長(zhǎng)度,但保持斜邊等于 1的一種查看無(wú)限個(gè)三角形的方式。
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3[1]
cot30°=√3
cot45°=1
cot60°=√3/3
sin15°=(√6-√2)/4
sin75°=(√6+√2)/4
cos15°=(√6+√2)/4
cos75°=(√6-√2)/4(這四個(gè)可根據(jù)sin(45°±30°)=sin45°cos30°±cos45°sin30°得出)
sin18°=(√5-1)/4 (這個(gè)值在高中競(jìng)賽和自招中會(huì)比較有用,即黃金分割的一半)
正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R
其中,R為△ABC的外接圓的半徑。
余弦定理:在△ABC中,b^2 = a^2 + c^2 - 2ac·cos θ。
其中,θ為邊a與邊c的夾角。
三角函數(shù)的誘導(dǎo)公式(六公式)
公式一:
sin(α+k*2π)=sinα
cos(α+k*2π)=cosα
tan(α+k*2π)=tanα
公式二:
sin(π+α) = -sinα
cos(π+α) = -cosα
tan(π+α)=tanα
公式三:
sin(-α) = -sinα
cos(-α) = cosα
tan (-α)=-tanα
公式四:
sin(π-α) = sinα
cos(π-α) = -cosα
tan(π-α) =-tanα
公式五:
sin(π/2-α) = cosα
cos(π/2-α) =sinα
由于π/2+α=π-(π/2-α),由公式四和公式五可得
公式六:
sin(π/2+α) = cosα
cos(π/2+α) = -sinα
誘導(dǎo)公式 記背訣竅:奇變偶不變,符號(hào)看象限。
三角和公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·coscγ-osα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ)
(α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ)
積化和差的四個(gè)公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
和差化積的四個(gè)公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
sin(3a)→3sina-4sin^3a
=sin(a+2a)
=sin2acosa+cos2asina
=2sina(1-sin^2a)+(1-2sin^2a)sina
=3sina-4sin^3a
cos3a→(2cos^2a-1)cosa-2(1-cos^2a)cosa
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos^2a-1)cosa-2(1-cos^2a)cosa
=4cos^3a-3cosa
sin3a→4sinasin(60°+a)sin(60°-a)
=3sina-4sin^3a
=4sina(3/4-sin^2a)
=4sina[(√3/2)-sina][(√3/2)+sina]
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a→4cosacos(60°-a)cos(60°+a)
=4cos^3a-3cosa
=4cosa(cos^2a-3/4)
=4cosa[cos^2a-(√3/2)^2]
=4cosa(cosa-cos30°)(cosa+cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
tan3a→tanatan(60°-a)tan(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
三倍角
sin3α=3sinα-4sin^3 α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cos^3 α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)
tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)
其他多倍角
四倍角
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角
sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))
cos6A=(-1+2*cosA)*(16*cosA^4-16*cosA^2+1)
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)
七倍角
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))
cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))
cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))
tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角
sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))
cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))
tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
N倍角
根據(jù)棣莫弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)
為方便描述,令sinθ=s,cosθ=c
考慮n為正整數(shù)的情形:
cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>;比較兩邊的實(shí)部與虛部
實(shí)部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*
虛部:i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …
對(duì)所有的自然數(shù)n:
⒈cos(nθ):
公式中出現(xiàn)的s都是偶次方,而s^2=1-c^2(平方關(guān)系),因此全部都可以改成以c(也就是cosθ)表示。
⒉sin(nθ):
⑴當(dāng)n是奇數(shù)時(shí):公式中出現(xiàn)的c都是偶次方,而c^2=1-s^2(平方關(guān)系),因此全部都可以改成以s(也 就是sinθ)表示。
⑵當(dāng)n是偶數(shù)時(shí):公式中出現(xiàn)的c都是奇次方,而c^2=1-s^2(平方關(guān)系),因此即使再怎么換成s,都至少會(huì)剩c(也就是 cosθ)的一次方無(wú)法消掉。
例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)
特殊公式
(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
證明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]
=sin(a+θ)*sin(a-θ)
我們通常把坡面的垂直高度h與水平寬度l的比叫做坡度(也叫坡比), 用字母i表示,
即i=h / l,坡度的一般形式寫(xiě)成l : m形式,如i=1:5.如果把坡面與水平面的夾角記作
a(叫做坡角),那么i=h/l=tan a.
半角公式萬(wàn)能公式6輔助角公式
注:該公式又稱(chēng)收縮公式 / 強(qiáng)提公式 / 化一公式 等
asin α+bcos α=√(a^2+b^2)sin(α+φ),其中tan φ=b/a
asinA+bcosB=根號(hào)下a方+b方×(根號(hào)下a方+b方分之a(chǎn)×sinA+根號(hào)下a方+b方分之b×cosB) 令根號(hào)下a方+b方分之a(chǎn)=cosC 則根號(hào)下a方+b方分之b=sinC asinA+bcosB=根號(hào)下a方+b方(sinAcosC+cosBsinC)=根號(hào)下a方+b方×sin(A+C)
sh a = [e^a-e^(-a)]/2
ch a = [e^a+e^(-a)]/2
th a = sin h(a)/cos h(a)
公式一:
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α與 -α的三角函數(shù)值之間的關(guān)系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
A·sin(ωt+θ)+ B·sin(ωt+φ) =
√{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)}}
√表示根號(hào),包括{……}中的內(nèi)容
arcsin(-x)= -arcsinx
arccos(-x)=π-arccosx
arctan(-x)= -arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=arctanx+arccotx=π/2[1]
聯(lián)系客服