本報記者 李 禾
“無科技,不金融”。隨著移動互聯(lián)網(wǎng)時代的到來,科技金融模式不斷創(chuàng)新,但是欺詐手法也在不斷翻新,呈現(xiàn)出專業(yè)化、產(chǎn)業(yè)化、隱蔽化等特點(diǎn)。日前,世界科技開發(fā)者盛會DeveloperWeek 2019評選VR、人工智能、金融科技等領(lǐng)域優(yōu)勝者,AI公司DataVisor維擇科技憑借無監(jiān)督機(jī)器學(xué)習(xí)技術(shù)獲得最具投資價值的科技金融企業(yè)獎。
無監(jiān)督機(jī)器學(xué)習(xí)技術(shù)是什么,為何會被認(rèn)為最具投資價值?它能在科技金融活動中起到什么作用?能解決哪些金融交易中的問題?
科技金融反欺詐創(chuàng)新利器
與傳統(tǒng)金融不同,互聯(lián)網(wǎng)金融業(yè)務(wù)大多發(fā)生在線上,往往幾秒鐘就完成審核、申請、放款等,面臨的欺詐風(fēng)險也是前所未有的。據(jù)統(tǒng)計,我國網(wǎng)絡(luò)犯罪導(dǎo)致的損失占GDP0.63%,一年損失金額高達(dá)4000多億人民幣。國際上的情況也不樂觀,多份市場研究報告指出,僅2016年一年,全球信用卡、借記卡、預(yù)付卡和私有品牌支付卡損失就高達(dá)163.1億美元;每年保險欺詐(不包括健康險)損失總額預(yù)計超過400億美元。
“隨著技術(shù)不斷演進(jìn),針對金融業(yè)的攻擊、欺詐手段已不同以往。團(tuán)伙作案、分工明確、掌握各種先進(jìn)技術(shù)工具、不斷變化攻擊手段,全新挑戰(zhàn)使得金融企業(yè)越來越難以招架?!盌ataVisor中國區(qū)總經(jīng)理吳中說,金融反欺詐期待創(chuàng)新已成業(yè)內(nèi)共識。
“無監(jiān)督機(jī)器學(xué)習(xí)是近年才發(fā)展起來的反欺詐手法。目前國內(nèi)反欺詐金融服務(wù)主要是應(yīng)用黑白名單、有監(jiān)督學(xué)習(xí)和無監(jiān)督機(jī)器學(xué)習(xí)的方法來實現(xiàn)。”愛信諾征信有限公司總經(jīng)理金端峰在接受科技日報記者專訪時說。
黑白名單被認(rèn)為是最原始的反欺詐方式,類似于“篩選器”。如銀行征信系統(tǒng)就可理解成一個黑白名單,信用卡多次逾期還款就可能被列入信貸“黑名單”;在淘寶上購買了退貨險后屢屢退貨,就可能上騙保“黑名單”。黑白名單是所有反欺詐方法中最簡單的,但也是更新最慢、成本最高的。
能將異常用戶一網(wǎng)打盡
有監(jiān)督學(xué)習(xí)需要大量有標(biāo)簽數(shù)據(jù)來訓(xùn)練模型,以此來預(yù)測還未被標(biāo)注的數(shù)據(jù)。以垃圾郵件為例,假如把5000封已由人工確認(rèn)過的垃圾郵件輸入到模型,模型通過對標(biāo)題的識別、郵件內(nèi)容句子的分割、關(guān)鍵詞的識別等各種分析方法,找到其中的內(nèi)在關(guān)系。如標(biāo)題中有“福利”二字的,有90%的可能性是垃圾郵件;一次性發(fā)送超過200封的,有60%的可能性是垃圾郵件;回復(fù)率低于10%的,有70%的可能性是垃圾郵件……于是,當(dāng)模型處理一封新郵件時,通過檢測以上各子項,并對每一子項乘以百分比后相加,就能得出垃圾郵件的可能性。但有監(jiān)督學(xué)習(xí)的弊端是,每個模型都需要大量訓(xùn)練數(shù)據(jù)以及較長的訓(xùn)練時間。
“可能你的模型還沒有訓(xùn)練好,欺詐分子已經(jīng)完成欺詐活動并尋找下個目標(biāo)了?!眳侵姓f。
無監(jiān)督機(jī)器學(xué)習(xí)主要方式有聚類和圖形分析。金端峰說,無監(jiān)督無需任何訓(xùn)練數(shù)據(jù)和標(biāo)簽,通過聚類等機(jī)器學(xué)習(xí)算法模型發(fā)現(xiàn)用戶的共性行為,以及用戶和用戶的關(guān)系來檢測欺詐。“通過無監(jiān)督機(jī)器學(xué)習(xí)分析用戶的共性行為,可以發(fā)現(xiàn)偽裝過的異常用戶,將其一網(wǎng)打盡?!?div style="height:15px;">
何為聚類方式?例如一群用戶注冊事件,可通過聚類發(fā)現(xiàn)幾個小群符合某些共性:注冊時間集中,都使用了某種操作系統(tǒng),某一個瀏覽器版本等。該用戶群中的任何一個單獨(dú)拿出來分析,看上去都極為正常,如果符合某種超乎尋常的一致性就十分可疑了。比如一群人在凌晨2—3點(diǎn)采用同一款瀏覽器注冊了同一產(chǎn)品,其IP的前20位相同,GPS定位小于1公里,注冊后都修改了昵稱和性別等。
現(xiàn)在的金融欺詐都是團(tuán)伙作戰(zhàn),面對“化整為零,批量復(fù)制”的欺詐手法,金端峰說,無監(jiān)督算法應(yīng)用于反欺詐檢測還有一個優(yōu)勢,那就是能提前預(yù)警?!艾F(xiàn)在的欺詐分子都有潛伏期,以免太容易被發(fā)現(xiàn)。由于他們在潛伏期的行為依然符合某種規(guī)律,具有某些一致性,同樣還是會被無監(jiān)督算法捕捉到。在攻擊發(fā)生前就檢測出欺詐分子,這一點(diǎn)傳統(tǒng)方法是難以做到的,防患于未然這也是無監(jiān)督機(jī)器學(xué)習(xí)之所以在反欺詐檢測中大放光彩的重要原因之一?!?div style="height:15px;">
在科技金融活動中,無監(jiān)督機(jī)器學(xué)習(xí)能有效防止欺詐行為的發(fā)生并及時對用戶發(fā)出預(yù)警,阻止開戶欺詐、欺詐交易、賬號盜取,發(fā)現(xiàn)洗錢攻擊等,保障正常的金融活動。
金端峰舉例說,猛犸反欺詐公司基于非監(jiān)督式的異常檢測,將數(shù)據(jù)分解為正常趨勢、隨機(jī)擾動和異常情況三部分,并在此基礎(chǔ)上做到設(shè)備、網(wǎng)絡(luò)和用戶三個層面上的“千人千面”;并根據(jù)用戶間的相互關(guān)聯(lián)構(gòu)造網(wǎng)絡(luò)圖,欺詐者往往團(tuán)體作案,行為表現(xiàn)在網(wǎng)絡(luò)圖中呈現(xiàn)高度一致性和聚集性,與正常用戶明顯不同,因此利用聚類和圖形分析辨別欺詐行為?!拔浵伣鸱?、京東金融等一些高科技互聯(lián)網(wǎng)公司也通過無監(jiān)督機(jī)器學(xué)習(xí)等技術(shù)手段,在金融科技方面取得了良好成績?!?div style="height:15px;">