免费视频淫片aa毛片_日韩高清在线亚洲专区vr_日韩大片免费观看视频播放_亚洲欧美国产精品完整版

打開(kāi)APP
userphoto
未登錄

開(kāi)通VIP,暢享免費(fèi)電子書(shū)等14項(xiàng)超值服

開(kāi)通VIP
平滑肌細(xì)胞誘導(dǎo)內(nèi)皮細(xì)胞E-選擇素表達(dá)的機(jī)制及其對(duì)剪切力的抑制作用

E-選擇蛋白是由內(nèi)皮細(xì)胞(EC)表達(dá)的主要粘附分子,其暴露于剪切應(yīng)力和鄰近的平滑肌細(xì)胞(SMC)。我們研究了通過(guò)SMC和剪切應(yīng)力調(diào)節(jié)EC E-選擇蛋白表達(dá)的機(jī)制。SMC共培養(yǎng)誘導(dǎo)E-選擇蛋白的表達(dá)和白細(xì)胞介素-1(IL-1)受體相關(guān)激酶糖蛋白-130的磷酸化以及下游絲裂原活化蛋白激酶(MAPK)和Akt的快速和持續(xù)增加。通過(guò)使用特異性抑制劑,顯性失活突變體和小干擾RNA,我們證明了c-Jun-NH 2的活化β-末端激酶(JNK)和MAPK途徑的p38對(duì)于共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)是關(guān)鍵的。凝膠移位和染色質(zhì)免疫沉淀實(shí)驗(yàn)表明,SMC共培養(yǎng)可增加ECs中核因子-κB(NF-κB) - 啟動(dòng)子結(jié)合活性; p65-反義,lactacystin和N-乙酰半胱氨酸對(duì)NF-κB活化的抑制阻斷了共培養(yǎng)誘導(dǎo)的E-選擇素啟動(dòng)子活性。使用中和抗體的蛋白質(zhì)陣列和阻斷測(cè)定證明EC / SMC共培養(yǎng)物產(chǎn)生的IL-1β和IL-6是共培養(yǎng)誘導(dǎo)EC信號(hào)傳導(dǎo)和E-選擇蛋白表達(dá)的主要貢獻(xiàn)者。EC的預(yù)剪切力為12達(dá)因/ cm 2抑制共培養(yǎng)誘導(dǎo)的EC信號(hào)傳導(dǎo)和E-選擇蛋白表達(dá)。我們的研究結(jié)果闡明了SMC誘導(dǎo)EC E-選擇蛋白表達(dá)的分子機(jī)制以及針對(duì)該SMC誘導(dǎo)的剪切應(yīng)力保護(hù)。

介紹

在動(dòng)脈粥樣硬化病變發(fā)展過(guò)程中,血管平滑肌細(xì)胞(SMC)從其生理收縮表型轉(zhuǎn)變?yōu)椴±砩砗铣杀硇筒⑦w移到內(nèi)膜,在那里它們釋放促炎細(xì)胞因子并與血管內(nèi)皮細(xì)胞(EC)相互作用以調(diào)節(jié)其基因表達(dá)和功能,包括白細(xì)胞募集的調(diào)節(jié)。1- 3個(gè) EC經(jīng)常受到血流誘導(dǎo)的剪切應(yīng)力,其可以主要通過(guò)調(diào)節(jié)粘附分子的EC表面表達(dá)來(lái)調(diào)節(jié)白細(xì)胞-EC相互作用和隨后的白細(xì)胞外滲到發(fā)炎組織中。3,4

E-選擇蛋白是一種主要的EC粘附分子,其調(diào)節(jié)白細(xì)胞從血流到炎癥部位的結(jié)合和外滲。已經(jīng)廣泛研究了細(xì)胞因子和剪切應(yīng)力對(duì)EC E-選擇蛋白表達(dá)的影響。E-選擇基因迅速被內(nèi)皮細(xì)胞響應(yīng)于促炎細(xì)胞因子表達(dá),并且它是更加適應(yīng)干擾,振蕩流5,6比層流剪切應(yīng)力。7上EC基因表達(dá)的剪切應(yīng)力的作用的大多數(shù)研究已經(jīng)對(duì)EC單層,這可能不反映ECS的體內(nèi)環(huán)境,存在于靠近的SMC進(jìn)行。通過(guò)使用我們新開(kāi)發(fā)的EC / SMC共培養(yǎng)流程系統(tǒng)8其中EC和SMC生長(zhǎng)在多孔膜的兩側(cè),我們證明了與SMC的共培養(yǎng)在靜態(tài)條件下誘導(dǎo)EC中的E-選擇蛋白表達(dá),并且這種共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)受到剪切應(yīng)力的抑制(12達(dá)因/厘米2)到ECs。8這些結(jié)果表明剪切應(yīng)力在血管內(nèi)平衡,通過(guò)抑制設(shè)在緊鄰的SMC在EC促炎基因表達(dá)的保護(hù)作用。該研究的目的是闡明調(diào)節(jié)EC中SMC誘導(dǎo)的E-選擇蛋白表達(dá)的介質(zhì)和信號(hào)傳導(dǎo)途徑及其受剪切應(yīng)力抑制的機(jī)制。

為了深入了解SMC和剪切應(yīng)力調(diào)節(jié)EC E-選擇蛋白表達(dá)的機(jī)制,我們使用細(xì)胞因子蛋白質(zhì)陣列,其包含針對(duì)120種細(xì)胞因子和其他蛋白質(zhì)的抗體,以分析由EC / SMC共培養(yǎng)產(chǎn)生的促炎因子。我們發(fā)現(xiàn)EC / SMC產(chǎn)生的細(xì)胞因子白細(xì)胞介素-1β(IL-1β)和IL-6可以對(duì)ECs產(chǎn)生旁分泌作用,從而提高其E-選擇素的表達(dá)。由EC / SMC產(chǎn)生的IL-1β和IL-6誘導(dǎo)的E-選擇素表達(dá)是通過(guò)受體相互作用分子IL-1受體相關(guān)激酶(IRAK)和糖蛋白-130(gp130)介導(dǎo)的,細(xì)胞內(nèi)信號(hào)級(jí)聯(lián)c -Jun-NH 2 - 末端激酶(JNK)和p38絲裂原活化蛋白激酶(MAPK),以及轉(zhuǎn)錄因子核因子-κB(NF-κB)。在與SMC共培養(yǎng)之前,將EC預(yù)暴露于12達(dá)因/ cm 2的高剪切應(yīng)力,但不是0.5達(dá)因/ cm 2的低剪切應(yīng)力,抑制共培養(yǎng)誘導(dǎo)的信號(hào)傳導(dǎo)和E-選擇蛋白表達(dá)。我們的研究結(jié)果為以下機(jī)制提供了分子基礎(chǔ):(1)SMCs在緊鄰的ECs中誘導(dǎo)E-選擇素表達(dá);(2)高剪切應(yīng)力抑制SMC誘導(dǎo)的E-選擇素表達(dá),從而影響其在血管穩(wěn)態(tài)中的保護(hù)作用。

材料和方法

這些研究的批準(zhǔn)來(lái)自臺(tái)灣國(guó)立衛(wèi)生研究院的機(jī)構(gòu)審查委員會(huì)。

物料

針對(duì)細(xì)胞外信號(hào)調(diào)節(jié)激酶2(ERK2; sc-1647),JNK1(sc-7345),IκBα(sc-1643),p50(sc-8414),p65(sc-8008)和p-Tyr的小鼠單克隆抗體(sc-508),小鼠單克隆磷酸-ERK(sc-7383)和磷酸-JNK(sc-6254)購(gòu)自Santa Cruz Biotechnology(Santa Cruz,CA)。針對(duì)p38和Akt,小鼠單克隆磷酸-p38抗體和兔多克隆磷酸-Akt抗體的兔多克隆抗體購(gòu)自Cell Signaling Technology(Beverly,MA)。單克隆E-選擇素抗體和抗IL-1β,IL-6,堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF),單核細(xì)胞趨化蛋白-1(MCP-1),生長(zhǎng)相關(guān)癌基因(GRO),調(diào)節(jié)激活的中和抗體正常T細(xì)胞表達(dá)和分泌趨化因子(RANTES),基質(zhì)細(xì)胞衍生因子(SDF-1),干擾素誘導(dǎo)的T細(xì)胞-α化學(xué)引誘物(I-TAC)和IL-4獲自R&D Systems(Minneapolis,MN)。針對(duì)gp130和IRAK的兔多克隆抗體獲自Upstate(Lake Placid,NY)。E-選擇素啟動(dòng)子構(gòu)建體是PE DiCorleto博士(凱斯西儲(chǔ)大學(xué)醫(yī)學(xué)院)的禮物。之前描述了ERK2(mERK),RasN17,Raf310,JNK(KR)和RacN17的催化失活突變體。9所述的ERK-,JNK-,p38-,AKT-,IRAK-,和特定的gp130小干擾RNA(siRNA)和對(duì)照siRNA自Invitrogen(Carlsbad,CA)購(gòu)買(mǎi)。所有其他試劑級(jí)化學(xué)品均購(gòu)自Sigma(St Louis,MO)。

細(xì)胞培養(yǎng)

通過(guò)膠原酶灌注10從新鮮人臍帶中分離EC,并在補(bǔ)充有20%胎牛血清(FBS; Gibco)的培養(yǎng)基199(M199; Gibco,Grand Island,NY)中的培養(yǎng)皿中生長(zhǎng)3天。在所有實(shí)驗(yàn)中使用二次培養(yǎng)。第三代人臍動(dòng)脈SMC在商業(yè)上獲得(Clonetics,Palo Alto,CA)并保持在補(bǔ)充有10%FBS的F12K培養(yǎng)基(Gibco)中。使用第4至6代之間的細(xì)胞。

剪應(yīng)力實(shí)驗(yàn)

將ECs接種到10μm厚的膜的外側(cè),所述膜含有0.4μm的孔(5×10 5個(gè)細(xì)胞/ cm 2 ; Falcon細(xì)胞培養(yǎng)插入物; Becton Dickinson,Lincoln Park,NJ)(預(yù)涂有纖維連接蛋白,30μg) / cm 2)。8在含有2%FBS的M199中培養(yǎng)24小時(shí)后,將含有EC的膜摻入含有聚碳酸酯插入物支架8的平行板流動(dòng)室中,并連接到灌注環(huán)系統(tǒng)以施加高剪切應(yīng)力(HSS) ; 12達(dá)因/厘米2)或低水平(LSS; 0.5達(dá)因/厘米2)4或24小時(shí)。

EC和SMC的共培養(yǎng)

在EC剪切完成后,在靜態(tài)條件下用SMC(2×10 5個(gè)細(xì)胞/ cm 2接種膜的相對(duì)(內(nèi)側(cè)),從而形成EC / SMC共培養(yǎng)系統(tǒng)(相鄰雙層模型; 圖1 A)。8在接種到膜上之前,胰蛋白酶消化后收集的SMC在超低附著微孔板(Costar 3471; Corning Inc,Corning,NY)中孵育2小時(shí)以消除胰蛋白酶消化的影響。對(duì)照具有EC,但在膜的相對(duì)側(cè)沒(méi)有SMC(EC /?)。為了研究ECs和SMC分離的效果,將接種在膜外側(cè)的EC與外室底部表面上鋪設(shè)的SMC分開(kāi)1 mm(EC / M / SMC;介質(zhì)分離模型) ; 圖1 B)。將EC和SMC維持在含有2%FBS的共享培養(yǎng)基中。

在HSS上預(yù)先剪切EC而不是LSS,抑制SMC誘導(dǎo)的EC E-選擇蛋白表達(dá)。ECs作為對(duì)照(EC /?)或與相鄰雙層模型(EC / SMC)(A,C,EG)或介質(zhì)分離模型(EC / M / SMC)(B,D)中的SMC共培養(yǎng)。 4小時(shí)(E,F(xiàn)),24小時(shí)(G)或指示的時(shí)間(C,D)。通過(guò)分別使用Northern印跡和流式細(xì)胞術(shù)分析測(cè)定這些EC的E-選擇蛋白mRNA(CF)和表面蛋白(G)表達(dá)。在一些實(shí)驗(yàn)中,ECs在HSS(12達(dá)因/ cm 2)下預(yù)先培養(yǎng)4小時(shí)(HS4)或24小時(shí)(HS24)或LSS(0.5達(dá)因/ cm 2)。)在SMC共培養(yǎng)(EG)之前24小時(shí)(LS24)。對(duì)照EC與沒(méi)有預(yù)先剪切(CL)(EF)的SMC共培養(yǎng)。數(shù)據(jù)表示為從對(duì)照EC /?歸一化至GAPDH RNA水平(CF)的條帶密度的百分比變化,并顯示為來(lái)自3個(gè)獨(dú)立實(shí)驗(yàn)的平均值±平均值標(biāo)準(zhǔn)(SEM)。* P <.05與對(duì)照EC /?相比。與對(duì)照EC / SMC相比,P <.05。流式細(xì)胞術(shù)分析(G)的結(jié)果代表具有類(lèi)似結(jié)果的一式三份實(shí)驗(yàn)。將與FITC綴合的對(duì)照IgG或單獨(dú)的FITC綴合的抗體一起溫育的EC用作IgG或陰性對(duì)照(即Blanks:B)。數(shù)字是通過(guò)與相應(yīng)的陰性對(duì)照比較確定的所有實(shí)驗(yàn)的平均熒光強(qiáng)度的平均值±SEM。

(1)RNA分離的程序; (2)Northern印跡; (3)逆轉(zhuǎn)錄聚合酶鏈反應(yīng)(RT-PCR); (4)實(shí)時(shí)PCR; (5)蛋白質(zhì)印跡; (6)流式細(xì)胞術(shù)分析; (7)電泳遷移率變動(dòng)分析(EMSA); (8)免疫沉淀; (9)染色質(zhì)免疫沉淀(ChIP)測(cè)定; (10)報(bào)告基因構(gòu)建,DNA質(zhì)粒,siRNA,轉(zhuǎn)染和熒光素酶測(cè)定; (11)用于檢測(cè)條件培養(yǎng)基中細(xì)胞因子的蛋白質(zhì)陣列分析; (12)反義寡核苷酸; (13)文件S1中提供了統(tǒng)計(jì)分析(可在血液網(wǎng)站上獲得;請(qǐng)參閱在線文章頂部的補(bǔ)充材料鏈接)。

結(jié)果

將EC預(yù)先暴露于HSS而不是LSS 24小時(shí)可抑制EC中SMC誘導(dǎo)的E-選擇蛋白表達(dá)

相鄰雙層模型中的EC / SMC共培養(yǎng)( 1A)誘導(dǎo)EC中E-選擇蛋白mRNA表達(dá)的增加(在1小時(shí)內(nèi)可檢測(cè); 1C)。當(dāng)EC與共培養(yǎng)的SMC分開(kāi)1mm填充培養(yǎng)基(培養(yǎng)基分離模型; 圖1B)時(shí),EC E-選擇蛋白mRNA表達(dá)的增加要慢得多(在4小時(shí)檢測(cè)到; 1D)。共培養(yǎng)模型中EC E-選擇蛋白mRNA表達(dá)的增加持續(xù)24小時(shí)。將ECs以12達(dá)因/ cm 2預(yù)暴露于HSS 24小時(shí),但不是4小時(shí),顯著抑制共培養(yǎng)誘導(dǎo)的E-選擇蛋白mRNA表達(dá)( 1E)。但是,LSS為0.5達(dá)因/ cm 2沒(méi)有這種抑制作用( 1F)。作為對(duì)照,與靜態(tài)細(xì)胞相比,HSS和LSS本身不改變單一培養(yǎng)的EC中的E-選擇蛋白mRNA表達(dá)(圖S1A)。流式細(xì)胞術(shù)分析顯示相鄰共培養(yǎng)24小時(shí)導(dǎo)致EC表面上E-選擇蛋白的表達(dá)增加,平均熒光強(qiáng)度為99.8,而EC單一培養(yǎng)中為11.3( 1G)。在HSS上24小時(shí)預(yù)先ECs將共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)降低至平均熒光強(qiáng)度18.7。

SMC誘導(dǎo)的E-選擇蛋白的EC表達(dá)及其對(duì)剪切應(yīng)力的抑制由JNK和p38途徑介導(dǎo)

已知MAPK超家族(即ERK,JNK和p38)和磷脂酰肌醇3-激酶(PI3K)/ Akt調(diào)節(jié)基因表達(dá)和細(xì)胞功能。11,12 ERK,JNK,p38和Akt的在EC的磷酸化的平滑肌細(xì)胞的共培養(yǎng)后迅速增加(5分鐘內(nèi)),在10分鐘時(shí)為Akt的,30分鐘ERK和JNK,和用于p38的1小時(shí)達(dá)到最大水平(圖2)。瞬時(shí)增加后,磷酸化水平降至接近基礎(chǔ)水平(6小時(shí)時(shí)ERK和p38)或甚至更低(4小時(shí)時(shí)JNK和2小時(shí)時(shí)Akt)。為了確定SMC誘導(dǎo)的E-選擇素表達(dá)是否通過(guò)MAPK-或PI3K / Akt依賴(lài)性途徑介導(dǎo),將EC與ERK的特異性抑制劑(PD98059;30μM),JNK(SP600125;20μM),p38一起孵育。在與SMC共培養(yǎng)之前和期間1小時(shí)(SB203580;10μM)或PI3K / Akt(LY294002 ;30μM)。EC 600-共培養(yǎng)的共培養(yǎng)誘導(dǎo)的mRNA(圖3A)和表面蛋白( 3B)表達(dá)被SP600125和SB203580顯著抑制,但不被PD98059和LY294002抑制。。用SP600125和SB203580同時(shí)處理EC不會(huì)導(dǎo)致共培養(yǎng)誘導(dǎo)的E-選擇蛋白mRNA(圖3A)和表面蛋白(數(shù)據(jù)未顯示)表達(dá)中的加性抑制。將ECs預(yù)暴露于HSS而不是LSS 24小時(shí)顯著抑制共培養(yǎng)誘導(dǎo)的JNK和p38磷酸化(圖3C),表明HSS對(duì)共培養(yǎng)誘導(dǎo)的E-選擇素表達(dá)的抑制作用可歸因于,至少部分地,其抑制共培養(yǎng)誘導(dǎo)的JNK和p38活化。作為對(duì)照,與靜態(tài)對(duì)照相比,HSS和LSS本身對(duì)EC中ERK,JNK,p38和Akt的激活僅有輕微影響(圖S1B-E)。

與SMC共培養(yǎng)誘導(dǎo)EC增加其磷酸化與SMC共培養(yǎng)誘導(dǎo)ECs增加其ERK(A),JNK(B),p38(C)和Akt(D)的磷酸化。將EC保持作為對(duì)照(EC /?)或與相鄰雙層模型(EC / SMC)中的SMC共培養(yǎng)指定的時(shí)間,并且通過(guò)使用蛋白質(zhì)印跡分析測(cè)定其ERK,JNK,p38和Akt的磷酸化。 。EC / SMC中磷酸化的ERK,JNK,p38和Akt蛋白的量表示為相對(duì)于對(duì)照EC / those中的條帶密度(相對(duì)于總蛋白水平標(biāo)準(zhǔn)化)。結(jié)果是來(lái)自3個(gè)獨(dú)立實(shí)驗(yàn)的平均值±SEM。* P <.05與對(duì)照EC /?相比。

通過(guò)SMC共培養(yǎng)誘導(dǎo)EC E-選擇蛋白表達(dá)及其通過(guò)剪切應(yīng)力的抑制由JNK和p38途徑介導(dǎo)。將EC保持作為對(duì)照(EC /?)或與相鄰雙層模型(EC / SMC)中的SMC共培養(yǎng)30分鐘(C,E),4小時(shí)(A,D)或24小時(shí)(B,F(xiàn)) 。在作為對(duì)照或與SMC共培養(yǎng)之前,ECs(1)用PD98059(PD;30μM),SP600125(SP;20μM),SB203580(SB;10μM)或LY294002預(yù)處理。(LY;30μM)單獨(dú)或SP600125和SB203580同時(shí)(CB)1小時(shí)(AB); (2)在HSS(HS)或LSS(LS)預(yù)先訓(xùn)練24小時(shí)(C); 或(3)轉(zhuǎn)染對(duì)照siRNA或ERK,JNK,p38或Akt的特異性siRNA(每種100μmol/ mL),或空載體對(duì)照PSRα(1μg/ mL),RasN17(1μg/ mL), RacN17(0.5μg/ mL),JNK(KR)(1μg/ mL),Raf301(1μg/ mL)或mERK(0.25μg/ mL)48小時(shí)(DF)。對(duì)照EC(CL)與SMC共培養(yǎng),無(wú)需任何預(yù)處理(A)或預(yù)先處理(C)。在一些實(shí)驗(yàn)中,用不同濃度的不同siRNA和嵌合體轉(zhuǎn)染ECs 48小時(shí)(E)。(F)ECs與含有540bp(堿基對(duì))E-選擇蛋白啟動(dòng)子區(qū)和報(bào)告基因熒光素酶的嵌合體(2μg)共轉(zhuǎn)染。mRNA(A,D)或E-選擇素的表面蛋白(B)表達(dá)或啟動(dòng)子活性(F)或這些EC中不同MAPK或Akt的表達(dá)或磷酸化(C,E)通過(guò)使用Northern印跡(A),流式細(xì)胞術(shù)( B),Western印跡(C,E),實(shí)時(shí)PCR(D)或熒光素酶測(cè)定分析(F),分別如“材料和方法”中所述。結(jié)果顯示為3或4的平均值±SEM。單獨(dú)的實(shí)驗(yàn)(A,C,D,F(xiàn))或代表具有類(lèi)似結(jié)果的一式三份實(shí)驗(yàn)(B,E)。數(shù)據(jù)表示為對(duì)照EC /?(A,C)的帶密度變化百分比; 標(biāo)準(zhǔn)化為18S RNA(A)或JNK或p38蛋白水平(C)。(B)與FITC-綴合的對(duì)照IgG或單獨(dú)的FITC-綴合的抗體一起溫育的EC用作IgG對(duì)照或陰性對(duì)照(即空白:B)。數(shù)字是通過(guò)與相應(yīng)的陰性對(duì)照比較確定的所有實(shí)驗(yàn)的平均熒光強(qiáng)度的平均值±SEM。*與對(duì)照EC / P相比,P <.05。與對(duì)照EC / SMC相比,P <.05。與對(duì)照siRNA或空載體對(duì)照PSRα轉(zhuǎn)染的細(xì)胞相比,$ P <.05。

為了進(jìn)一步證實(shí)JNK和p38的參與,而不是ERK和PI3K / Akt,通過(guò)SMC共培養(yǎng)和剪切應(yīng)力調(diào)節(jié)EC中E-選擇蛋白表達(dá)的途徑,我們檢測(cè)了顯性陰性突變體或這些的siRNA的作用。在預(yù)先存在或不存在的情況下,與SMC共培養(yǎng)的EC中E-選擇蛋白表達(dá)的信號(hào)傳導(dǎo)途徑。共培養(yǎng)誘導(dǎo)的E-選擇素mRNA表達(dá)受到轉(zhuǎn)染ECs的抑制,其中JNK-或p38特異性siRNA(每種100μmol/ mL),Ras的顯性陰性突變體(RasN17;1μg/ mL)或Rac( RacN17;0.5μg/ mL),或JNK的催化失活突變體[JNK(KR); 1μg/ mL [,但不能通過(guò)轉(zhuǎn)染ERK-或Akt特異性siRNA(每種100μmol/ mL),Raf-1的顯性失活突變體(Raf301;1μg/ mL)或催化失活突變體ERK2(mERK;0.25μg/ mL)(圖3 D)。驗(yàn)證了這些治療的有效性:ERK-,JNK-,p38-和Akt-特異性siRNA(與對(duì)照siRNA相比)分別導(dǎo)致ERK,JNK,p38和Akt蛋白表達(dá)降低75%(圖3 E) )。RasN17,RacN17和JNK(KR)抑制共培養(yǎng)誘導(dǎo)的JNK磷酸化(與空載體對(duì)照PSRα相比),并且Raf301和mERK在共培養(yǎng)誘導(dǎo)的ERK磷酸化中引起抑制(與對(duì)照PSRα相比)( 3E)。與EC單一培養(yǎng)物相比,用E-選擇素-Luc轉(zhuǎn)染的ECs顯示SMC共培養(yǎng)物的啟動(dòng)子活性增加至3.3倍(圖3)F)。在HSS上預(yù)先清除EC而不是LSS,廢除了這種SMC增加的E-選擇素啟動(dòng)子活性。用空載體對(duì)照PSRα或?qū)φ誷iRNA共轉(zhuǎn)染EC對(duì)共培養(yǎng)誘導(dǎo)的E-選擇素啟動(dòng)子活性沒(méi)有影響。用p38特異性siRNA,RasN17,RacN17或JNK(KR)共轉(zhuǎn)染EC導(dǎo)致共培養(yǎng)誘導(dǎo)的E-選擇蛋白啟動(dòng)子活性的顯著抑制。然而,用Akt特異性siRNA,Raf301或mERK共轉(zhuǎn)染對(duì)SMC共培養(yǎng)誘導(dǎo)能力沒(méi)有影響。這些結(jié)果提供了額外的證據(jù),即JNK和p38途徑在SMs的調(diào)節(jié)作用和剪切應(yīng)力對(duì)EC中E-選擇蛋白表達(dá)中起重要作用。

SMC誘導(dǎo)的E-選擇蛋白的EC表達(dá)及其對(duì)剪切應(yīng)力的抑制依賴(lài)于NF-κB

NF-κB是細(xì)胞對(duì)炎癥刺激的反應(yīng)的重要介質(zhì)。13我們通過(guò)使用反義寡核苷酸對(duì)NF-κB亞基p65的(P65反義),轉(zhuǎn)錄抑制劑乳胞素,和抗氧化劑檢查與在EC中E-選擇蛋白表達(dá)的SMC感應(yīng)NF-κB表達(dá)干擾的影響N-乙酰半胱氨酸(NAC)。向E-選擇素-Luc轉(zhuǎn)染的EC中加入NAC和lactacystin完全消除了共培養(yǎng)誘導(dǎo)的E-選擇素啟動(dòng)子活性(圖4)一個(gè))。此外,用p65反義但不是p65義的共轉(zhuǎn)染細(xì)胞,寡核苷酸顯著抑制共培養(yǎng)誘導(dǎo)的啟動(dòng)子活性。EMSA的結(jié)果顯示,與SMC共培養(yǎng)導(dǎo)致EC核中的NF-κB-DNA結(jié)合活性在10分鐘內(nèi)增加( 4B)并且保持升高至少2小時(shí)。NF-κB-DNA結(jié)合活性的這種增加伴隨著IκBα的同時(shí)減少,IκBα是一種抑制NF-κB二聚體易位進(jìn)入細(xì)胞核的抑制蛋白( 4C)。ECS在HSS(但不是LSS)的預(yù)剪切顯著抑制了NF-κB-DNA結(jié)合活性的增加( 4D)和SMC共培養(yǎng)誘導(dǎo)的IκBα蛋白表達(dá)的減少(圖4)F)。與靜態(tài)對(duì)照相比,在HSS中預(yù)先培養(yǎng)24小時(shí)對(duì)EC中的NF-κB-DNA結(jié)合活性沒(méi)有影響; 相反,在LSS中預(yù)先訓(xùn)練導(dǎo)致EC中NF-κB-DNA結(jié)合活性的增加(圖S1F)。SP600125和SB203580對(duì)共培養(yǎng)介導(dǎo)的NF-κB-DNA結(jié)合活性( 4E)和IκBα蛋白表達(dá)( 4F)的變化沒(méi)有顯著影響。NF-κB-DNA復(fù)合物的形成需要存在野生型NF-κB結(jié)合位點(diǎn),如通過(guò)缺乏與突變寡核苷酸的直接結(jié)合或競(jìng)爭(zhēng)所證明的,而過(guò)量的未標(biāo)記的野生型寡核苷酸能夠有效地與32 P標(biāo)記的寡核苷酸競(jìng)爭(zhēng)NF-κB結(jié)合(圖4G)。在用p65抗體預(yù)孵育核蛋白后,NF-κB-DNA復(fù)合物的凝膠遷移率超遷移進(jìn)一步證實(shí)了這種結(jié)合NF-κB的特異性。

NF-κB參與EC中E-選擇素表達(dá)的SMC和剪切應(yīng)力調(diào)節(jié)。將EC保持作為對(duì)照(EC /?)或與相鄰雙層模型(EC / SMC)中的SMC共培養(yǎng)30分鐘(DG,I),24小時(shí)(A)或指示時(shí)間(B,C,H) 。在作為對(duì)照或與SMC共培養(yǎng)之前,ECs(1)用E-選擇蛋白-Luc轉(zhuǎn)染48小時(shí)和/或用反義(p65-a;1μg/ mL)或有義(p65-s;1μg/ 1)預(yù)處理。 mL)NF-κB亞基p65的寡核苷酸24小時(shí)或用lactacystin(Lac;20μM)或N-乙酰半胱氨酸(NAC; 20 mM)處理1小時(shí)(A),(2)在HSS(HS)預(yù)先注射或LSS(LS)24小時(shí)(D,F(xiàn),I),或(3)單獨(dú)或組合(CB)用SP600125(SP;20μM)或SB203580(SB;10μM)預(yù)處理1小時(shí)(E, F,I)。對(duì)照EC(CL)與SMC共培養(yǎng),沒(méi)有任何預(yù)先剪切(D,F(xiàn),I)或預(yù)處理(D,F(xiàn),I)。E-選擇素啟動(dòng)子活性(A),NF-κB-DNA結(jié)合活性(B,D,E,G),32 P-標(biāo)記的寡核苷酸,含有野生型(CL)或突變體(Mut)人E-選擇蛋白NF-κB結(jié)合位點(diǎn)。通過(guò)用20倍過(guò)量的未標(biāo)記的寡核苷酸(野生型或突變體)作為競(jìng)爭(zhēng)物或用p50和/或p65抗體(1μg)預(yù)孵育核提取物來(lái)評(píng)估延遲復(fù)合物(NF-κB)的特異性。與p65抗體預(yù)孵育的核提取物顯示超移位帶(SH)(G)。(BG)結(jié)果代表2或3個(gè)具有相似結(jié)果的獨(dú)立實(shí)驗(yàn)。(A,HI)數(shù)據(jù)表示為3至5個(gè)獨(dú)立實(shí)驗(yàn)的平均值±SEM。* P <.05與對(duì)照EC /?相比。與對(duì)照EC / SMC相比,P <.05。

為了進(jìn)一步評(píng)估在預(yù)先存在或不存在的情況下與SMC共培養(yǎng)的EC中E-選擇素基因的啟動(dòng)子區(qū)域的NF-κB結(jié)合的體內(nèi)調(diào)節(jié),我們通過(guò)使用針對(duì)p65的抗體在這些EC中進(jìn)行ChIP測(cè)定。啟動(dòng)子特異性引物。與共培養(yǎng)共培養(yǎng)的ECs早在共培養(yǎng)后10分鐘就增加了體內(nèi)NF-κB與其E-選擇素啟動(dòng)子的結(jié)合,在30分鐘內(nèi)達(dá)到最大水平(與單一培養(yǎng)的EC相比約4.8倍)(圖4)H)。與SMC共培養(yǎng)2小時(shí)后,NF-κB啟動(dòng)子結(jié)合水平下降,但仍然高于單一培養(yǎng)的EC。此共培養(yǎng)誘導(dǎo)的體內(nèi)NF-κB結(jié)合E-選擇的啟動(dòng)子,通過(guò)內(nèi)皮細(xì)胞的preshearing在HSS(但不是LSS)取消,并且它不被與SP600125,SB203580,或兩者(ECS的預(yù)處理圖4予)。

EC / SMC產(chǎn)生的IL-1β和IL-6是導(dǎo)致SMs中SMC誘導(dǎo)的信號(hào)傳導(dǎo)和E-選擇素表達(dá)的主要因素

通過(guò)SMC共培養(yǎng)與培養(yǎng)基分離模型在EC中E-選擇蛋白表達(dá)的增加表明共培養(yǎng)導(dǎo)致某些介質(zhì)的釋放對(duì)EC產(chǎn)生旁分泌作用以誘導(dǎo)其E-選擇蛋白表達(dá)。為了解決這種可能的旁分泌作用,我們通過(guò)使用含有針對(duì)120種細(xì)胞因子和其他蛋白質(zhì)的抗體的人細(xì)胞因子陣列系統(tǒng)檢查了EC / SMC和EC / EC的條件培養(yǎng)基中細(xì)胞因子的表達(dá)水平(圖S2;表S1)。使用該陣列,我們鑒定了在EC / SMC與EC / EC之間的介質(zhì)中表達(dá)顯著不同的蛋白質(zhì)(即,對(duì)于P≤0.05,平均共培養(yǎng)/單一培養(yǎng)比≥2或≤5。通過(guò)應(yīng)用這些標(biāo)準(zhǔn)來(lái)分析陣列上存在的120種細(xì)胞因子的結(jié)果,我們將IL-1β和IL-6鑒定為EC / SMC比EC / EC顯著更高水平釋放的蛋白質(zhì)(圖5A ;表S1) ,蛋白質(zhì)比率分別為4.16±0.12和4.13±0.19。用針對(duì)IL-6或IL-1β(或組合)的中和抗體孵育EC顯著抑制共培養(yǎng)誘導(dǎo)的E-選擇蛋白mRNA表達(dá)( 5B),以及共培養(yǎng)誘導(dǎo)的JNK和p38磷酸化增加。 ( 5C)和NF-κB-DNA結(jié)合活性( 5D),以及IκBα蛋白水平的降低(圖5)E)。與這些結(jié)果一致,ChIP實(shí)驗(yàn)揭示內(nèi)皮細(xì)胞用針對(duì)IL-1β的抗體溫育后,IL-6,或兩者阻斷共培養(yǎng)誘導(dǎo)的體內(nèi)在EC到E-選擇啟動(dòng)子NF-κB的結(jié)合(圖5 ?F )。作為對(duì)照,ECs與針對(duì)bFGF,MCP-1,GRO,RANTES或SDF-1(其表達(dá)在EC / SMC中相對(duì)于EC / EC的表達(dá)升高)的中和抗體的孵育,I-TAC(其表達(dá)未改變) )或IL-4(其表達(dá)降低)不抑制共培養(yǎng)誘導(dǎo)的E-選擇蛋白mRNA表達(dá)(圖S3)。

EC / SMC產(chǎn)生的IL-1β和IL-6是導(dǎo)致SMs中SMC誘導(dǎo)的信號(hào)傳導(dǎo)和E-選擇素表達(dá)的主要因素。(A)檢測(cè)EC / EC或EC / SMC共培養(yǎng)的條件培養(yǎng)基中細(xì)胞因子的蛋白質(zhì)水平。用針對(duì)120種不同細(xì)胞因子和其他蛋白質(zhì)的抗體點(diǎn)樣的膜(圖S2)與2倍稀釋的EC / EC或EC / SMC共培養(yǎng)的條件培養(yǎng)基一起孵育,然后與生物素標(biāo)記的抗體的混合物一起孵育,如“材料和方法。”通過(guò)增強(qiáng)化學(xué)發(fā)光(ECL)進(jìn)行的信號(hào)檢測(cè)表明,EC / SMC產(chǎn)生的IL-1β(實(shí)心盒中的斑點(diǎn))和IL-6(儀表盒中的斑點(diǎn))的表達(dá)水平顯著高于EC / EC。結(jié)果代表4個(gè)獨(dú)立實(shí)驗(yàn),結(jié)果相似。(BF)EC作為對(duì)照(EC /?)保持或與相鄰雙層模型(EC / SMC)中的SMC共培養(yǎng)30分鐘(CF)或4小時(shí)(B)。在平行實(shí)驗(yàn)中,將ECs與針對(duì)IL-1β或IL-6的中和抗體(每種5μg/ mL)或它們的組合預(yù)孵育1小時(shí),然后在抗體存在下與SMC共培養(yǎng)。在對(duì)照IgG(CL)存在下,將對(duì)照EC與SMC共培養(yǎng)。確定E-選擇蛋白mRNA表達(dá)(B),JNK和p38磷酸化(C),NF-κB-DNA結(jié)合活性(D),IκBα蛋白表達(dá)(E)和體內(nèi)NF-κB-啟動(dòng)子結(jié)合(F)分別使用Northern印跡分析,Western印跡分析,EMSA和ChIP分析,如“材料和方法”(BC,E)中所述。數(shù)據(jù)表示為從對(duì)照EC /?標(biāo)準(zhǔn)化為GAPDH RNA的條帶密度的百分比變化。 (B),JNK或p38蛋白(C),或肌動(dòng)蛋白(E)。顯示的結(jié)果是3至4次獨(dú)立實(shí)驗(yàn)的平均值±SEM。* 在對(duì)照IgG(CL)存在下,將對(duì)照EC與SMC共培養(yǎng)。確定E-選擇蛋白mRNA表達(dá)(B),JNK和p38磷酸化(C),NF-κB-DNA結(jié)合活性(D),IκBα蛋白表達(dá)(E)和體內(nèi)NF-κB-啟動(dòng)子結(jié)合(F)分別使用Northern印跡分析,Western印跡分析,EMSA和ChIP分析,如“材料和方法”(BC,E)中所述。數(shù)據(jù)表示為從對(duì)照EC /?標(biāo)準(zhǔn)化為GAPDH RNA的條帶密度的百分比變化。 (B),JNK或p38蛋白(C),或肌動(dòng)蛋白(E)。顯示的結(jié)果是3至4次獨(dú)立實(shí)驗(yàn)的平均值±SEM。* 在對(duì)照IgG(CL)存在下,將對(duì)照EC與SMC共培養(yǎng)。確定E-選擇蛋白mRNA表達(dá)(B),JNK和p38磷酸化(C),NF-κB-DNA結(jié)合活性(D),IκBα蛋白表達(dá)(E)和體內(nèi)NF-κB-啟動(dòng)子結(jié)合(F)分別使用Northern印跡分析,Western印跡分析,EMSA和ChIP分析,如“材料和方法”(BC,E)中所述。數(shù)據(jù)表示為從對(duì)照EC /?標(biāo)準(zhǔn)化為GAPDH RNA的條帶密度的百分比變化。 (B),JNK或p38蛋白(C),或肌動(dòng)蛋白(E)。顯示的結(jié)果是3至4次獨(dú)立實(shí)驗(yàn)的平均值±SEM。* 體內(nèi)NF-κB-啟動(dòng)子結(jié)合(F)分別通過(guò)Northern印跡分析,Western印跡分析,EMSA和ChIP測(cè)定確定,如“材料和方法”中所述。(BC,E)數(shù)據(jù)表示為來(lái)自對(duì)照EC / band的帶密度的百分比變化歸一化為GAPDH RNA(B),JNK或p38蛋白(C)或肌動(dòng)蛋白(E)。顯示的結(jié)果是3至4次獨(dú)立實(shí)驗(yàn)的平均值±SEM。* 體內(nèi)NF-κB-啟動(dòng)子結(jié)合(F)分別通過(guò)Northern印跡分析,Western印跡分析,EMSA和ChIP測(cè)定確定,如“材料和方法”中所述。(BC,E)數(shù)據(jù)表示為來(lái)自對(duì)照EC / band的帶密度的百分比變化歸一化為GAPDH RNA(B),JNK或p38蛋白(C)或肌動(dòng)蛋白(E)。顯示的結(jié)果是3至4次獨(dú)立實(shí)驗(yàn)的平均值±SEM。*與對(duì)照EC / P相比,P <.05。與對(duì)照EC / SMC相比,P <.05。

IRAK和gp130參與SMC共培養(yǎng)和剪切應(yīng)力對(duì)EC E-選擇蛋白表達(dá)的調(diào)節(jié)作用

鑒于我們的研究結(jié)果,EC / SMC共培養(yǎng)產(chǎn)生的IL-6和IL-1β是導(dǎo)致SMC誘導(dǎo)的EC信號(hào)傳導(dǎo)和E-選擇蛋白表達(dá)的主要因素,并且EC的預(yù)先(HSS)抑制了這些SMC誘導(dǎo)的變化,我們假設(shè)通過(guò)SMC共培養(yǎng)和剪切應(yīng)力調(diào)節(jié)EC信號(hào)傳導(dǎo)和基因表達(dá)可以通過(guò)EC中的IL-6和IL-1β受體介導(dǎo)。為了測(cè)試這種可能性,我們使用針對(duì)gp130的特異性siRNA(其為IL-6受體)和IRAK(其在其刺激下與IL-1β的受體形成復(fù)合物)來(lái)抑制gp130和IRAK的表達(dá)并檢查它們。對(duì)SMC誘導(dǎo)的E-選擇蛋白表達(dá)的影響。圖6 A)。gp130( 6B)和IRAK( 6C)的這些減少伴隨著EC中SMC誘導(dǎo)的E-選擇蛋白表達(dá)的降低。為了進(jìn)一步檢查SMC共培養(yǎng)和剪切應(yīng)力對(duì)ECs中g(shù)p130和IRAK活化的影響,在預(yù)先存在或不存在的情況下與SMC共培養(yǎng)的EC提取物用針對(duì)gp130或IRAK的抗體進(jìn)行免疫沉淀,然后進(jìn)行蛋白質(zhì)印跡分析。針對(duì)p-Tyr或IRAK的抗體。在測(cè)試的30分鐘時(shí)間內(nèi)與SMC共培養(yǎng)EC誘導(dǎo)gp130和IRAK的磷酸化( 6D),并且通過(guò)在HSS(但不是LSS)預(yù)先訓(xùn)練ECs 24小時(shí)來(lái)抑制gp130和IRAK磷酸化的這種增加(圖6)。E)。這些結(jié)果表明,SMC共培養(yǎng)和剪切應(yīng)力對(duì)EC信號(hào)傳導(dǎo)和基因表達(dá)的影響至少部分地通過(guò)EC中IL-6和IL-1β受體激活的調(diào)節(jié)來(lái)介導(dǎo)。

IRAK和gp130通過(guò)SMC共培養(yǎng)和剪切應(yīng)力促進(jìn)EC信號(hào)傳導(dǎo)和E-選擇蛋白表達(dá)的調(diào)節(jié)(A)將EC保持作為對(duì)照或用對(duì)照siRNA(siCL)或指定濃度的gp130(sigp130)或IRAK(siIRAK)的特異性siRNA轉(zhuǎn)染48小時(shí),并通過(guò)RT-PCR測(cè)定它們的gp130或IRAK mRNA表達(dá)。分析,如“材料和方法”(BE)中所述,EC作為對(duì)照(EC /?)或與相鄰雙層模型(EC / SMC)中的SMC共培養(yǎng)10分鐘(E)),4小時(shí)(BC)或指示時(shí)間(D)。在與SMC共培養(yǎng)之前,用對(duì)照siRNA或gp130(B)或IRAK(C)的特異性siRNA(每種100μmol/ mL)轉(zhuǎn)染ECs 48小時(shí),或者在HSS(HS)或LSS(LS)中預(yù)先培養(yǎng)。 24小時(shí)(E)。對(duì)照EC(CL)與未轉(zhuǎn)染(BC)或預(yù)先(E)的SMC共培養(yǎng)。通過(guò)分別使用RT-PCR分析或免疫沉淀測(cè)定和Western印跡分析測(cè)定E-選擇蛋白和gp130(B)或IRAK(C)的mRNA表達(dá),或這些EC中g(shù)p130和IRAK(DE)的磷酸化。(AE)中的結(jié)果代表具有類(lèi)似結(jié)果的一式三份實(shí)驗(yàn)。

討論

在動(dòng)脈粥樣硬化中起重要作用的E-選擇蛋白是由血管EC表達(dá)的主要粘附分子,其存在于血管SMC附近并且經(jīng)常受到血流誘導(dǎo)的剪切應(yīng)力。我們目前的研究旨在闡明SMC和剪切應(yīng)力在調(diào)節(jié)EC中E-選擇素表達(dá)中的作用的分子機(jī)制。使用我們新開(kāi)發(fā)的EC / SMC共培養(yǎng)流系統(tǒng),我們證明了在靜態(tài)條件下EC與SMC的共培養(yǎng)誘導(dǎo)了EC E-選擇蛋白表達(dá)的快速和持續(xù)增加。E-選擇素表達(dá)的這種增加至少部分歸因于EC / SMC共培養(yǎng)產(chǎn)生的細(xì)胞因子IL-1β和IL-6的旁分泌作用,其作用于EC以激活它們的受體相互作用分子IRAK和gp130。 ,以及下游JNK / p38和NF-κB途徑。將EC預(yù)先暴露于高水平但不是低水平的剪切應(yīng)力顯著抑制了這種共培養(yǎng)誘導(dǎo)的信號(hào)傳導(dǎo)和E-選擇蛋白表達(dá)。我們的研究結(jié)果為SMC誘導(dǎo)EC E-選擇素表達(dá)的機(jī)制和剪切應(yīng)力對(duì)該SMC誘導(dǎo)的保護(hù)功能提供了分子基礎(chǔ)。

SMC對(duì)EC誘導(dǎo)E-選擇素表達(dá)的旁分泌作用通過(guò)在培養(yǎng)基分離模型中與SMC共培養(yǎng)的EC中E-選擇蛋白的表達(dá)增加得到證實(shí)(圖1B,D),其中2種類(lèi)型的細(xì)胞用1毫米培養(yǎng)基分開(kāi)。正如預(yù)期的那樣,誘導(dǎo)E選擇表達(dá)所需的時(shí)間比相鄰雙層模型更長(zhǎng)(4小時(shí))(1小時(shí); 圖1)A,C)。與鄰近雙層模型相比,在培養(yǎng)基分離模型中E-選擇蛋白的這種較慢誘導(dǎo)可歸因于EC和SMC之間的較長(zhǎng)距離以及到達(dá)EC的較低濃度的旁分泌物質(zhì)。通過(guò)使用蛋白質(zhì)陣列對(duì)共培養(yǎng)物中產(chǎn)生的細(xì)胞因子的表達(dá)水平進(jìn)行系統(tǒng)分析,我們將IL-1β和IL-6鑒定為在EC / SMC的條件培養(yǎng)基中的表達(dá)顯著高于EC / EC的蛋白質(zhì)。 。EC / SMC培養(yǎng)基中IL-1β和IL-6水平較高可能不是由于共培養(yǎng)的ECs產(chǎn)生IL-1β和IL-6的增加,因?yàn)镋Cs中這2種細(xì)胞因子的表達(dá)沒(méi)有被改變。他們與SMC的共培養(yǎng)(數(shù)據(jù)未顯示)。14因此,在本研究中顯示出的特性類(lèi)似于用新內(nèi)膜平滑肌細(xì)胞的平滑肌細(xì)胞,其顯示一個(gè)合成型特征在于增加的細(xì)胞因子的表達(dá)。2,3我們最近的數(shù)據(jù)表明,本實(shí)驗(yàn)的條件下的SMC具有收縮標(biāo)志物蛋白的表達(dá)水平較低(例如,平滑肌α肌動(dòng)蛋白,肌球蛋白重鏈,H-鈣調(diào)結(jié)合蛋白,和鈣調(diào)蛋白)比培養(yǎng)在培養(yǎng)基僅含0.5%FBS。4我們通過(guò)使用蛋白質(zhì)陣列發(fā)現(xiàn),本研究中使用的SMC具有比EC更高水平的IL-1β和IL-6表達(dá)(數(shù)據(jù)未顯示)。用IL-1β或IL-6或用SMC的上清液處理單一培養(yǎng)的EC,模擬SMC共培養(yǎng)物誘導(dǎo)EC E-選擇蛋白表達(dá)的作用(數(shù)據(jù)未顯示)。這些結(jié)果表明,本研究中的SMC處于合成表型,其可能通過(guò)IL-1β和IL-6的旁分泌釋放影響鄰近的EC以誘導(dǎo)其促炎基因表達(dá)和功能。

通過(guò)使用針對(duì)IL-1β和IL-6的中和抗體,我們已經(jīng)證明EC / SMC產(chǎn)生的這2種細(xì)胞因子是促成EC中共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)的主要因素。該共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)由IRAK / gp130和下游JNK / p38和NF-κB途徑介導(dǎo)。幾個(gè)證據(jù)支持這一發(fā)現(xiàn)。首先,與SMC共培養(yǎng)的EC誘導(dǎo)IRAK / gp130的快速磷酸化,已顯示其激活若干細(xì)胞內(nèi)信號(hào)傳導(dǎo)途徑,包括MAPK,PI3K / Akt和NF-κB。15其次,與SMC共培養(yǎng)誘導(dǎo)ECs中ERK,JNK,p38和Akt的快速磷酸化; 然而,只有JNK和p38的特異性抑制劑(即SP600125和SB203580)抑制共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá),這表明JNK / p38的激活對(duì)于共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)是關(guān)鍵的。通過(guò)用JNK,Rac或Ras的顯性失活突變體轉(zhuǎn)染,抑制共培養(yǎng)誘導(dǎo)的E-選擇素mRNA表達(dá)和EC中的啟動(dòng)子活性,證實(shí)JNK / p38途徑參與共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)。 ,或JNK或p38的特異性siRNA。第三,EMSA和ChIP測(cè)定的結(jié)果顯示SMC共培養(yǎng)增加了EC核中NF-κB的結(jié)合活性和體內(nèi)啟動(dòng)子結(jié)合。NF-κB結(jié)合活性的這種增加伴隨著IκBα的減少。NF-κB抑制劑,包括p65-反義,lactacystin和NAC,抑制共培養(yǎng)誘導(dǎo)的E-選擇素啟動(dòng)子活性,表明NF-κB參與共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)。最后,針對(duì)IL-1β和IL-6的中和抗體對(duì)共培養(yǎng)誘導(dǎo)的JNK / p38和NF-κB活化以及EC中E-選擇蛋白表達(dá)的抑制作用表明SMC共培養(yǎng)的作用是通過(guò)結(jié)合來(lái)介導(dǎo)的。 IL-1β和IL-6與其在EC中的相應(yīng)受體。此外,IRAK和gp130參與共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)通過(guò)用IRAK或gp130的特異性siRNA轉(zhuǎn)染降低EC中的E-選擇蛋白表達(dá)來(lái)證實(shí)。表明NF-κB參與共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)。最后,針對(duì)IL-1β和IL-6的中和抗體對(duì)共培養(yǎng)誘導(dǎo)的JNK / p38和NF-κB活化以及EC中E-選擇蛋白表達(dá)的抑制作用表明SMC共培養(yǎng)的作用是通過(guò)結(jié)合來(lái)介導(dǎo)的。 IL-1β和IL-6與其在EC中的相應(yīng)受體。此外,IRAK和gp130參與共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)通過(guò)用IRAK或gp130的特異性siRNA轉(zhuǎn)染降低EC中的E-選擇蛋白表達(dá)來(lái)證實(shí)。表明NF-κB參與共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)。最后,針對(duì)IL-1β和IL-6的中和抗體對(duì)共培養(yǎng)誘導(dǎo)的JNK / p38和NF-κB活化以及EC中E-選擇蛋白表達(dá)的抑制作用表明SMC共培養(yǎng)的作用是通過(guò)結(jié)合來(lái)介導(dǎo)的。 IL-1β和IL-6與其在EC中的相應(yīng)受體。此外,IRAK和gp130參與共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)通過(guò)用IRAK或gp130的特異性siRNA轉(zhuǎn)染降低EC中的E-選擇蛋白表達(dá)來(lái)證實(shí)。中和抗IL-1β和IL-6的抗體對(duì)共培養(yǎng)誘導(dǎo)的JNK / p38和NF-κB活化以及EC中E-選擇素表達(dá)的抑制作用表明SMC共培養(yǎng)的作用是由IL-的結(jié)合介導(dǎo)的。 1β和IL-6與它們?cè)贓C中的相應(yīng)受體。此外,IRAK和gp130參與共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)通過(guò)用IRAK或gp130的特異性siRNA轉(zhuǎn)染降低EC中的E-選擇蛋白表達(dá)來(lái)證實(shí)。中和抗IL-1β和IL-6的抗體對(duì)共培養(yǎng)誘導(dǎo)的JNK / p38和NF-κB活化以及EC中E-選擇素表達(dá)的抑制作用表明SMC共培養(yǎng)的作用是由IL-的結(jié)合介導(dǎo)的。 1β和IL-6與它們?cè)贓C中的相應(yīng)受體。此外,IRAK和gp130參與共培養(yǎng)誘導(dǎo)的E-選擇蛋白表達(dá)通過(guò)用IRAK或gp130的特異性siRNA轉(zhuǎn)染降低EC中的E-選擇蛋白表達(dá)來(lái)證實(shí)。

It has been demonstrated that IL-6 exerts its biologic activity through binding to its specific receptor (IL-6R) and gp130, which serves as a signal-transducing unit.16 However, some studies have suggested that ECs do not express IL-6R and require exogenous soluble IL-6R (sIL-6R) to trigger gp130 signaling,17 whereas others have reported that ECs do express IL-6R and that IL-6 can directly activate EC signaling and gene expression.18,19 These differences in results could be due to the functional and molecular heterogeneity that exists among different types of ECs.20 Because direct addition of IL-6 (2.5 ng/mL; Sigma) to EC monocultures without exogenous addition of sIL-6R can mimic the effects of SMC coculture in inducing EC activation of gp130, MAPKs, and NF-κB and the expression of E-selectin (data not shown), the results suggest that IL-6 may be able to exert direct effects on these signaling and gene expression in ECs. Using RT-PCR and enzyme-linked immunoabsorbent assay (ELISA) we have shown that the ECs used in the present study have constitutive expressions of IL-6R and sIL-6R, whereas the expressions of IL-6R and sIL-6R by SMCs were not detectable (Figure S4). It is probable that the constitutive expressions of IL-6R and sIL-6R by ECs can contribute to the SMC/IL-6 signaling in ECs.

Read et al21 have identified NF-κB and positive domain II (PDII), which contains a cAMP-responsive element/activating transcription factor (ATF)–like binding site, in the E-selectin promoter as responsive elements for expression of this gene induced by tumor necrosis factor-α (TNF-α). They showed that a heterodimer of transcription factors ATF-2 and c-JUN is constitutively bound to the PDII site, and that TNF-α stimulation of ECs induces marked activation of the JNK and p38 and their associations with c-JUN and ATF-2. Using immunoprecipitation assay, we have shown that coculture of ECs with SMCs for 30 minutes induces an increase in JNK/c-JUN and p38/ATF-2 associations (Figure S5), suggesting that the c-JUN and ATF-2 are downstream of JNK and p38 and may also be involved in SMC-induced E-selectin expression in ECs. Our results of EMSA using double-stranded oligonucleotides containing the PDII site (5′-GTACAATGATGTCAGAAACTCTGTC-3′)21 did not show specific DNA bindings of c-JUN/ATF-2 in the nucleus of ECs cocultured with SMCs. Thus, the c-JUN/ATF-2 responsive element in the E-selectin promoter in ECs in response to coculture with SMCs remains to be determined. In our present study, the specific inhibitors of JNK and p38 (ie, SP600125 and SB203580) did not inhibit the coculture-mediated increases in NF-κB–DNA binding activity and in vivo NF-κB–promoter binding, nor the decrease in the protein level of IκBα. This is in agreement with the findings by Read et al21 that NF-κB and JNK/p38 represent 2 separate signaling pathways, both of which are required for inflammatory cytokine responsiveness of E-selectin. It is possible that these 2 pathways are rapidly activated and converge on the E-selectin promoter to result in full activation of this gene in ECs by coculture with SMCs.

Our results indicate that the “preconditioning” of ECs by different levels of shear stress (HSS versus LSS) differentially modulates the response of EC gene expression to SMC coculture. The way in which HSS inhibits the EC E-selectin expression in cocultures is likely to be multifactorial. Blocking assays using antibodies against αvβ3 and β1 integrins, which are well-recognized mechanosenors in ECs in response to shear stress,22 did not eliminate the inhibitory effect of shear stress on SMC-induced E-selectin expression (Figure S6), suggesting that integrins may not be involved in the effect of shear stress on E-selectin expression in cocultured ECs. Because our results showed that HSS preshearing can inhibit the coculture-mediated activation of IRAK/gp130, JNK/p38, and NF-κB and reduction of IκBα, it is likely that the shear-mediated inhibition in coculture-induced E-selectin expression is attributable to the shear-mediated inhibition of the activation of these signaling pathways in cocultured ECs. In addition, our previous study showed that the SMC induction of proinflammatory genes in ECs was associated with their attenuation of endothelial nitric oxide synthase (eNOS) expression.8 Given that HSS can induce up-regulation of eNOS and production of nitric oxide (NO),2326 the inhibitory effect of HSS on SMC-induced E-selectin expression in ECs could also be associated with the increased levels of NO in presheared ECs. Moreover, Krüppel-like factor 2 (KLF2) has been shown to be an important regulator of EC activation in response to proinflammatory stimuli and shear stress.2730 Given that (1) the KLF2 expression in ECs can be inhibited by IL-1β and induced by shear stress and (2) overexpression of KLF2 can inhibit the IL-1β induction of E-selectin in ECs,28 it is likely that the KLF2 expression in ECs could be down-regulated by their coculture with SMCs and the inhibitory effect of preshearing on SMC-induced EC E-selectin expression could be due to, at least in part, the increase in the KLF2 expression in presheared ECs. Thus, KLF2 may serve as an additional mediator of the effects of SMCs and shear stress on E-selectin expression in ECs.

In summary, our present study has characterized the mechanisms by which (1) SMCs in close adjacency to ECs induce EC E-selectin expression and (2) shear stress inhibits this SMC-induced E-selectin expression (summarized in Figure 7). The cytokines IL-1β and IL-6 produced by EC/SMC coculture may interact with their corresponding receptors in ECs to induce their coupling with and activation of receptor-associated proteins IRAK and gp130 and the consequent activation of both JNK/p38 and NF-κB signaling pathways, and ultimately E-selectin expression. Shear stress may inhibit the SMC-induced E-selectin expression via the inhibition in SMC activation of IRAK/gp130, JNK/p38, and NF-κB. Our findings provide insights into the mechanisms underlying the interplays of SMCs with ECs and the protective homeostatic function of shear stress in modulating EC signaling and gene expression.

Schematic representation of the signaling pathways regulating SMC-induced E-selectin expression in ECs and its inhibition by shear stress.

Supplementary Material

[Supplemental Table and Figures]

Acknowledgments

This work was supported by the National Health Research Institutes (Taiwan) (grant ME-095-PP-06) (J.-J.C.); the National Science Council (Taiwan) (grants 96-3112-B-400-009 and 95-2320-B-400-003) (J.-J.C.); and the National Heart, Lung, and Blood Institute (grants HL064382 and HL080518) (S.C.)

Footnotes

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

Authorship

Contribution: J.-J.C. and S.C. designed the research, wrote the paper, and provided financial support for the study; L.-J.C., C.-I.L., P.-L.L., M.-C.T., D.-Y.L., and C.-W.L. performed the experiments; S.U. contributed to the design of the EC/SMC coculture flow system.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Jeng-Jiann Chiu, Division of Medical Engineering Research, National Health Research Institutes, Miaoli 350, Taiwan, ROC; e-mail: wt.gro.irhn@uihcjj.

References

1. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84:767–801. [PubMed]
2. Zeiffer U, Schober A, Lietz M, et al. Neointimal smooth muscle cells display a proinflammatory phenotype resulting in increased leukocyte recruitment mediated by P-selectin and chemokines. Circ Res. 2004;94:776–784. [PubMed]
3. Rainger GE, Nash GB. Cellular pathology of atherosclerosis: smooth muscle cells prime co-cultured endothelial cells for enhanced leukocyte adhesion. Circ Res. 2001;88:615–622. [PubMed]
4. Chen CN, Chang SF, Lee PL, et al. Neutrophils, lymphocytes, and monocytes exhibit diverse behaviors in transendothelial and subendothelial migrations under co-culture with smooth muscle cells in disturbed flow. Blood. 2006;107:1933–1942. [PMC free article] [PubMed]
5. Chiu JJ, Chen CN, Lee PL, et al. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J Biomech. 2003;36:1883–1895. [PubMed]
6. Chappell DC, Varner SE, Nerem RM, Medford RM, Alexander RW. Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res. 1998;82:532–539. [PubMed]
7. Morigi M, Zoja C, Figliuzzi M, et al. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood. 1995;85:1696–1703. [PubMed]
8. Chiu JJ, Chen LJ, Lee PL, et al. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood. 2003;101:2667–2674. [PubMed]
9. Wung BS, Cheng JJ, Chao YJ, Hsieh HJ, Wang DL. Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circ Res. 1999;84:804–812. [PubMed]
10. Gimbrone MA., Jr . Culture of vascular endothelium. In: Spact TH, editor. Progress in Hemostasis and Thrombosis. Vol III. New York, NY: Grune and Stratton; 1976. pp. 1–28. [PubMed]
11. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298:1911–1912. [PubMed]
12. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–1657. [PubMed]
13. Barnes PJ. Nuclear factor-kappa B. Int J Biochem Cell Biol. 1997;29:867–870. [PubMed]
14. Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature. 1998;393:790–793. [PubMed]
15. Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 2002;13:413–421. [PubMed]
16. Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood. 1995;86:1243–1254. [PubMed]
17. Romano M, Sironi M, Toniatti C, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity. 1997;6:315–325. [PubMed]
18. Nilsson MB, Langley RR, Fidler IJ. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res. 2005;65:10794–10800. [PMC free article] [PubMed]
19. Ni CW, Hsieh HJ, Chao YJ, Wang DL. Interleukin-6-induced JAK2/STAT3 signaling pathway in endothelial cells is suppressed by hemodynamic flow. Am J Physiol Cell Physiol. 2004;287:C771–780. [PubMed]
20. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J Clin Invest. 1998;102:430–437. [PMC free article] [PubMed]
21. Read MA, Whitley MZ, Gupta S, et al. Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J Biol Chem. 1997;272:2753–2761. [PubMed]
22. Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circ Res. 2002;91:769–775. [PubMed]
23. Kuchan MJ, Jo H, Frangos JA. Role of G protein in shear stress-mediated nitric oxide production by endothelial cells. Am J Physiol. 1994;267:C753–C758. [PubMed]
24. Tsao PS, Lewis NP, Alpert A, Cooke JP. Exposure to shear stress alters endothelial adhesiveness: role of nitric oxide. Circulation. 1995;92:3513–3519. [PubMed]
25. Uematsu M, Ohara Y, Navas JP, et al. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol. 1995;269:C1371–C1378. [PubMed]
26. Ranjan V, Xiao Z, Diamond SL. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol. 1995;269:H550–H555. [PubMed]
27. Dekker RJ, van Soest S, Fontijn RD, et al. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood. 2002;100:1689–1698. [PubMed]
28. SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199:1305–1315. [PMC free article] [PubMed]
29. Parmar KM,Larman HB,Dai G,et al。通過(guò)Kruppel樣因子2整合流量依賴(lài)的內(nèi)皮細(xì)胞表型.J Clin Invest。2006; 116:49-58。 [ PMC免費(fèi)文章 ] [ PubMed ]
30. 王娜,苗H,李Y,等。Kruppel樣因子2表達(dá)的剪切應(yīng)力調(diào)節(jié)是流動(dòng)模式特異性的。Biochem Biophys Res Commun。2006; 341:1244-1251。[ PubMed ]
本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶(hù)發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)
打開(kāi)APP,閱讀全文并永久保存 查看更多類(lèi)似文章
猜你喜歡
類(lèi)似文章
免疫沉淀與免疫共沉淀原理及方法
IP實(shí)驗(yàn)疑難解答分析
免疫共沉淀技術(shù)實(shí)驗(yàn)注意事項(xiàng)
曲妥珠單抗Trastuzumab化學(xué)性質(zhì)和特異性說(shuō)明
scRNA-seq揭示了正常和高脂飲食喂養(yǎng)小鼠升主動(dòng)脈的細(xì)胞異質(zhì)性
T細(xì)胞雙特異性抗體
更多類(lèi)似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長(zhǎng)圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服